1、初二数学一次函数选择方案提高练习与常考题和培优题含解析822020年4月19日文档仅供参考初二数学一次函数选择方案提高练习与常考题和培优题(含解析)一选择题(共3小题)1某工厂加工一批零件,为了提高工人工作积极性,工厂规定每名工人每次薪金如下:生产的零件不超过a件,则每件3元,超过a件,超过部分每件b元,如图是一名工人一天获得薪金y(元)与其生产的件数x(件)之间的函数关系式,则下列结论错误的是()Aa=20Bb=4C若工人甲一天获得薪金180元,则她共生产50件D若工人乙一天生产m(件),则她获得薪金4m元2在一次自行车越野赛中,甲乙两名选手行驶的路程y(千米)随时间x(分)变化的图象(全程
2、)如图,根据图象判定下列结论不正确的是()A前30分钟,甲在乙的前面B这次比赛的全程是28千米C第48分钟时,两人第一次相遇D甲先到达终点3一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元)每次游泳收费(元)A 类5025B 类20020C 类40015例如,购买A类会员年卡,一年内游泳20次,消费50+2520=550元,若一年内在该游泳馆游泳的次数介于4555次之间,则最省钱的方式为()A购买A类会员年卡B购买B类会员年卡C购买C类会员年卡D不购买会员年卡二解答题(共9小题)4某酒厂生产A、B两种品牌的酒,每天两种酒共生产600瓶,每种酒每瓶的
3、成本和利润如下表所示设每天共获利y元,每天生产A种品牌的酒x瓶AB成本(元)5035利润(元)2015(1)请写出y关于x的函数关系式;(2)如果该厂每天至少投入成本25000元,且生产B种品牌的酒不少于全天产量的55%,那么共有几种生产方案?并求出每天至少获利多少元?5某市在城中村改造中,需要种植A、B两种不同的树苗共3000棵,经招标,承包商以15万元的报价中标承包了这项工程,根据调查及相关资料表明,A、B两种树苗的成本价及成活率如表:品种购买价(元/棵)成活率A2890%B4095%设种植A种树苗x棵,承包商获得的利润为y元(1)求y与x之间的函数关系式;(2)政府要求栽植这批树苗的成活
4、率不低于93%,承包商应如何选种树苗才能获得最大利润?最大利润是多少?6某中学准备组织该校八年级400名学生租车外出进行综合实践活动,并安排10位教师同行,要求保证每人都有座位经学校与汽车出租公司协商,有两种型号的客车可供选择,其座位数(不含司机座位)与租金如右表所示学校决定租用两种型号的客车共10辆,其中大客车x辆 大客车中客车座位数(个/辆)4530租金(元/辆)600450(1)请问有哪几种租车方案?(2)设学校租车的总费用为y元,请写出y与x之间的函数关系式,并说明怎样租车可使租金最少?最少租金为多少元?7某中学公司组织初三505名学生外出社会综合实践活动,现打算租用A、B 两种型号的
5、汽车,而且每辆车上都安排1名导游,如果租用这两种型号的汽车各5辆,则刚好坐满;如果全部租用B型汽车,则需13辆汽车,且其中一辆会有2个空位,其余汽车都坐满(注:同种型号的汽车乘客座位数相同)(1)A、B两种型号的汽车分别有多少个乘客座位?(2)综合考虑多种因素,最后该公司决定租用9辆汽车,问最多安排几辆B型汽车?8A校和B校分别库存有电脑12台和6台,现决定支援给C校10台和D校8台已知从A校调运一台电脑到C校和D校的运费分别为40元和10元;从B校调运一台电脑到C校和D校的运费分别为30元和20元(1)设A校运往C校的电脑为x台,请仿照下图,求总运费W(元)关于x的函数关系式;(2)求出总运
6、费最低的调运方案,最低运费是多少?9为了贯彻落实市委政府提出的“精准扶贫”精神,某校特制定了一系列帮扶A、B两贫困村的计划,现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如表:车型 目的地A村(元/辆)B村(元/辆)大货车800900小货车400600(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式(3)在(2)的条件下,若运往A村的鱼苗不少于10
7、0箱,请你写出使总费用最少的货车调配方案,并求出最少费用10为了节约资源,科学指导居民改进居住条件,小王向房管部门提出了一个购买商品房的政策性方案人均住房面积(平方米)单价(万元/平方米)不超过30(平方米)0.3超过30平方米不超过m(平方米)部分(45m60)0.5超过m平方米部分0.7根据这个购房方案:(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;(2)设该家庭购买商品房的人均面积为x平方米,缴纳房款y万元,请求出y关于x的函数关系式;(3)若该家庭购买商品房的人均面积为50平方米,缴纳房款为y万元,且57y60 时,求m的取值范围11甲、乙两组同时加工某种零件,乙组工
8、作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍两组各自加工零件的数量y(件)与时间x(时)的函数图象如图所示(1)直接写出甲组加工零件的数量y与时间x之间的函数关系式;(2)求乙组加工零件总量a的值;(3)甲、乙两组加工出的零件合在一起装箱,每满300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?12某土特产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满,根据下表提供的信息,解答以下问题:土特产品种甲乙丙每辆汽车运载量(吨)865每吨土特产获利(百元)121610(1)设装运甲种土
9、特产的车辆数为x,装运乙种土特产的车辆数为y,求y与x之间的函数关系式(2)如果装运每种土特产的车辆都不少于3辆,那么车辆的安排方案有几种并写出每种安排方案(3)若要使此次销售获利最大,应采用(2)中哪种安排方案?并求出最大利润的值一解答题(共40小题)1在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地,乙骑摩托车从B地到A地,到达A地后立即按原路返回,是甲、乙两人离B地的距离y(km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:(1)A、B两地之间的距离为km;(2)直接写出y甲,y乙与x之间的函数关系式(不写过程),求出点M的坐标,并解释该点坐标所表示的实际意义;(3)若
10、两人之间的距离不超过3km时,能够用无线对讲机保持联系,求甲、乙两人能够用无线对讲机保持联系时x的取值范围2如图,某个体户购进一批时令水果,20天销售完毕她将本次销售情况进行了跟踪记录,根据所记录的数据可绘制的函数图象,其中日销售量y(千克)与销售时间x(天)之间的函数关系如图甲所示,销售单价p(元/千克)与销售时间x(天)之间的函数关系如图乙所示(1)直接写出y与x之间的函数关系式;(2)分别求出第10天和第15天的销售金额;(3)若日销售量不低于24千克的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售单价最高为多少元?3为增强公民的节约意识,合理利用天然气资
11、源,某市自1月1日起对市区民用管道天然气价格进行调整,实行阶梯式气价,调整后的收费价格如表所示:每月用气量单价(元/m3)不超出75m3的部分2.5超出75m3不超出125m3的部分a超出125m3的部分a+0.25(1)若甲用户3月份的用气量为60m3,则应缴费元;(2)若调价后每月支出的燃气费为y(元),每月的用气量为x(m3),y与x之间的关系如图所示,求a的值及y与x之间的函数关系式;(3)在(2)的条件下,若乙用户2、3月份共用气175m3(3月份用气量低于2月份用气量),共缴费455元,乙用户2、3月份的用气量各是多少?4为了迎接“十一”小长假的购物高峰某运动品牌专卖店准备购进甲、
12、乙两种运动鞋其中甲、乙两种运动鞋的进价和售价如下表:运动鞋价格甲乙进价(元/双)mm20售价(元/双)240160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50a70)元出售,乙种运动鞋价格不变那么该专卖店要获得最大利润应如何进货?5新农村社区改造中,有一部分楼盘要对外销售,某楼盘共23层,销售价格如下:第八层楼房售价为
13、4000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套楼房面积均为120米2若购买者一次性付清所有房款,开发商有两种优惠方案:方案一:降价8%,另外每套楼房赠送a元装修基金;方案二:降价10%,没有其它赠送(1)请写出售价y(元/米2)与楼层x(1x23,x取整数)之间的函数关系式;(2)老王要购买第十六层的一套楼房,若她一次性付清购房款,请帮她计算哪种优惠方案更加合算6山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售
14、总额将比去年减少20%(1)今年A型车每辆售价多少元?(用列方程的方法解答)(2)该车行计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A,B两种型号车的进货和销售价格如下表:A型车B型车进货价格(元)11001400销售价格(元)今年的销售价格 7兰新铁路的通车,圆了全国人民的一个梦,坐上火车去观赏青海门源百里油菜花海,感受大美青海独特的高原风光,暑假某校准备组织学生、老师到门源进行社会实践,为了便于管理,师生必须乘坐在同一列高铁上,根据报名人数,若都买一等座单程火车票需2340元,若都买二等座单程火车票花钱最少,则需1650
15、元:西宁到门源的火车票价格如下表运行区间票价上车站下车站一等座二等座西宁门源36元30元(1)参加社会实践的学生、老师各有多少人?(2)由于各种原因,二等座火车票单程只能买x张(参加社会实践的学生人数x参加社会实践的总人数),其余的须买一等座火车票,在保证每位参与人员都有座位坐而且总费用最低的前提下,请你写出购买火车票的总费用(单程)y与x之间的函数关系式8周末,小芳骑自行车从家出发到野外郊游,从家出发0.5小时到达甲地,游玩一段时间后按原速前往乙地,小芳离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,行驶10分钟时,恰好经过甲地,如图是她们距乙地的路程y(km)与小芳离家时间x(h)的函数
16、图象(1)小芳骑车的速度为km/h,H点坐标(2)小芳从家出发多少小时后被妈妈追上?此时距家的路程多远?(3)相遇后,妈妈载上小芳和自行车同时到达乙地(彼此交流时间忽略不计),求小芳比预计时间早几分钟到达乙地?9某工厂生产一种产品,当产量至少为10吨,但不超过55吨时,每吨的成本y(万元)与产量x(吨)之间是一次函数关系,函数y与自变量x的部分对应值如表: x(吨) 10 20 30 y(万元/吨) 45 40 35(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)当投入生产这种产品的总成本为1200万元时,求该产品的总产量;(注:总成本=每吨成本总产量)(3)市场调查发现,这种产品
17、每月销售量m(吨)与销售单价n(万元/吨)之间满足如图所示的函数关系,该厂第一个月按同一销售单价卖出这种产品25吨请求出该厂第一个月销售这种产品获得的利润(注:利润=售价成本)10为保障中国海外维和部队官兵的生活,现需经过A港口、B港口分别运送100吨和50吨生活物资已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:港口运费(元/吨)甲库乙库A港1420B港108(1)设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x的取值范围; (2)求出最低费用,并说明费用最低时的调配方案11快、慢两车分别从相距4
18、80千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,途中慢车因故停留1小时,然后以原速继续向甲地行驶,到达甲地后停止行驶;快车到达乙地后,立即按原路原速返回甲地(快车掉头的时间忽略不计),快、慢两车距乙地的路程y(千米)与所用时间x(小时)之间的函数图象如图,请结合图象信息解答下列问题:(1)直接写出慢车的行驶速度和a的值;(2)快车与慢车第一次相遇时,距离甲地的路程是多少千米?(3)两车出发后几小时相距的路程为200千米?请直接写出答案12由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少,已知原有蓄水量y1(万m3)与干旱持续时间x(天)的关系如图中线段l1所示,针对这种干旱情况
19、,从第20天开始向水库注水,注水量y2(万m3)与时间x(天)的关系如图中线段l2所示(不考虑其它因素)(1)求原有蓄水量y1(万m3)与时间x(天)的函数关系式,并求当x=20时的水库总蓄水量(2)求当0x60时,水库的总蓄水量y(万m3)与时间x(天)的函数关系式(注明x的范围),若总蓄水量不多于900万m3为严重干旱,直接写出发生严重干旱时x的范围13某地实行医疗保险(以下简称“医保”)制度医保机构规定:一:每位居民年初缴纳医保基金70元;二:居民每个人当年治病所花的医疗费(以定点医院的治疗发票为准),年底按下列方式(见表一)报销所治病的医疗费用:居民个人当年治病所花费的医疗费医疗费的报
20、销方法不超过n元的部分全部由医保基金承担(即全部报销)超过n元但不超过6000元的部分个人承担k%,其余部分由医保基金承担超过6000元的部分个人承担20%,其余部分由医保基金承担 如果设一位居民当年治病花费的医疗费为x元,她个人实际承担的医疗费用(包括医疗费中个人承担部分和年初缴纳的医保基金)记为y元(1)当0xn时,y=70;当nx6000时,y=(用含n、k、x的式子表示)(2)表二是该地A、B、C三位居民 治病所花费的医疗费和个人实际承担的医疗费用,根据表中的数据,求出n、k的值表二:居民ABC某次治病所花费的治疗费用x(元)4008001500个人实际承担的医疗费用y(元)70190
21、470(3)该地居民周大爷 治病所花费的医疗费共3 元,那么这一年她个人实际承担的医疗费用是多少元?14小慧和小聪沿图1中的景区公路游览小慧乘坐车速为30km/h的电动汽车,早上7:00从宾馆出发,游玩后中午12:00回到宾馆小聪骑车从飞瀑出发前往宾馆,速度为20km/h,途中遇见小慧时,小慧恰好游完一景点后乘车前往下一景点上午10:00小聪到达宾馆图2中的图象分别表示两人离宾馆的路程s(km)与时间t(h)的函数关系试结合图中信息回答:(1)小聪上午几点钟从飞瀑出发?(2)试求线段AB、GH的交点B的坐标,并说明它的实际意义(3)如果小聪到达宾馆后,立即以30km/h的速度按原路返回,那么返
22、回途中她几点钟遇见小慧?15某工厂投入生产一种机器的总成本为 万元当该机器生产数量至少为10台,但不超过70台时,每台成本y与生产数量x之间是一次函数关系,函数y与自变量x的部分对应值如下表:x(单位:台)102030y(单位:万元台)605550(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求该机器的生产数量;(3)市场调查发现,这种机器每月销售量z(台)与售价a(万元台)之间满足如图所示的函数关系该厂生产这种机器后第一个月按同一售价共卖出这种机器25台,请你求出该厂第一个月销售这种机器的利润(注:利润=售价成本)16某县响应“建设环保节约型社会”的号召,决定资助部分村镇修
23、建一批沼气池,使农民用到经济、环保的沼气能源幸福村共有264户村民,政府补助村里34万元,不足部分由村民集资修建A型、B型沼气池共20个两种型号沼气池每个修建费用、可供使用户数、修建用地情况如下表:沼气池修建费(万元/个)可供用户数(户/个)占地面积(m2/个)A型32048B型236政府相关部门批给该村沼气池修建用地708m2设修建A型沼气池x个,修建两种型号沼气池共需费用y万元(1)求y与x之间的函数关系式;(2)不超过政府批给修建沼气池用地面积,又要使该村每户村民用上沼气的修建方案有几种;(3)若平均每户村民集资700元,能否满足所需费用最少的修建方案17某84消毒液工厂,去年五月份以前
24、,每天的产量与销售量均为500箱,进入五月份后,每天的产量保持不变,市场需求量不断增加如图是五月前后一段时期库存量y(箱)与生产时间t(月份)之间的函数图象(五月份以30天计算)(1)该厂月份开始出现供不应求的现象五月份的平均日销售量为箱;(2)为满足市场需求,该厂打算在投资不超过220万元的情况下,购买8台新设备,使扩大生产规模后的日产量不低于五月份的平均日销售量现有A、B两种型号的设备可供选择,其价格与两种设备的日产量如下表:型 号AB价格(万元/台)2825日产量(箱/台)5040请设计一种购买设备的方案,使得日产量最大;(3)在(2)的条件下(市场日平均需求量与5月相同),若安装设备需
25、5天(6月6日新设备开始生产),指出何时开始该厂有库存?18随着信息技术的快速发展,“互联网+”渗透到我们日常生活的各个领域,网上在线学习交流已不再是梦,现有某教学网站策划了A,B两种上网学习的月收费方式:收费方式月使用费/元包时上网时间/h超时费/(元/min)A7250.01Bmn0.01设每月上网学习时间为x小时,方案A,B的收费金额分别为yA,yB(1)如图是yB与x之间函数关系的图象,请根据图象填空:m=;n=(2)写出yA与x之间的函数关系式(3)选择哪种方式上网学习合算,为什么?19一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车同时出发不久,第二列快车也从甲地发往乙
26、地,速度与第一列快车相同在第一列快车与慢车相遇30分后,第二列快车与慢车相遇设慢车行驶的时间为x(单位:时),慢车与第一、第二列快车之间的距离y(单位:千米)与x(单位:时)之间的函数关系如图1、图2,根据图象信息解答下列问题:(1)甲、乙两地之间的距离为千米(2)求图1中线段CD所表示的y与x之间的函数关系式,并写出自变量x的取值范围(3)请直接在图2中的()内填上正确的数20国庆期间,为了满足百姓的消费需求,某商店计划用170000元购进一批家电,这批家电的进价和售价如表:类别彩电冰箱洗衣机进价(元/台) 16001000售价(元/台)230018001100若在现有资金允许的范围内,购买
27、表中三类家电共100台,其中彩电台数是冰箱台数的2倍,设该商店购买冰箱x台(1)商店至多能够购买冰箱多少台?(2)购买冰箱多少台时,能使商店销售完这批家电后获得的利润最大?最大利润为多少元?21我省某苹果基地销售优质苹果,该基地对需要送货且购买量在 kg5000kg(含 kg和5000kg)的客户有两种销售方案(客户只能选择其中一种方案):方案A:每千克5.8元,由基地免费送货方案B:每千克5元,客户需支付运费 元(1)请分别写出按方案A,方案B购买这种苹果的应付款y(元)与购买量x(kg)之间的函数表示式;(2)求购买量x在什么范围时,选用方案A比喻案B付款少;(3)某水果批发商计划用 0元
28、,选用这两种方案中的一种,购买尽可能多的这种苹果,请直接写出她应选择哪种方案22某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:甲乙进价(元/部)40002500售价(元/部)43003000该商场计划购进两种手机若干部,共需15.5万元,预计全部销售后获毛利润共2.1万元(毛利润=(售价进价)销售量)(1)该商场计划购进甲、乙两种手机各多少部?(2)经过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量,已知乙种手机增加的数量是甲种手机减少的数量的3倍,而且用于购进这两种手机的总资金不超过17.25万元,该商场怎样进货,使全部销售后获得
29、的毛利润最大?并求出最大毛利润23因长期干旱,甲水库蓄水量降到了正常水位的最低值为灌溉需要,由乙水库向甲水库匀速供水,20h后,甲水库打开一个排灌闸为农田匀速灌溉,又经过20h,甲水库打开另一个排灌闸同时灌溉,再经过40h,乙水库停止供水甲水库每个排泄闸的灌溉速度相同,图中的折线表示甲水库蓄水量Q(万m3) 与时间t(h) 之间的函数关系求:(1)线段BC的函数表示式;(2)乙水库供水速度和甲水库一个排灌闸的灌溉速度;(3)乙水库停止供水后,经过多长时间甲水库蓄水量又降到了正常水位的最低值?24甲、乙两组同学玩“两人背夹球”比赛,即:每组两名同学用背部夹着球跑完规定的路程,若途中球掉下时须捡起
30、并回到掉球处继续赛跑,用时少者胜结果:甲组两位同学掉了球;乙组两位同学则顺利跑完设比赛距出发点用y表示,单位是米;比赛时间用x表示,单位是秒两组同学比赛过程用图象表示如下(1)这是一次米的背夹球比赛,获胜的是组同学;(2)请直接写出线段AB的实际意义;(3)求出C点坐标并说明点C的实际意义25如图,甲丙两地相距500km,一列快车从甲地驶往丙地,且途中经过乙地;一列慢车从乙地驶往丙地,两车同时出发同向而行,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系根据图象进行以下探究:(1)甲乙两地之间的距离为km;(2)求慢车和快车的速度(3)求线段CD所表示
31、的y与x之间的函数关系式,并写出自变量x的取值范围;(4)若这列快车从甲地驶往丙地,慢车从丙地驶往甲地,两车同时出发相向而行,且两车的车速各自不变设慢车行驶的时间为x(h),两车之间的距离为y(km),则下列四个图象中,哪一图象中的折线能表示此时y(千米)和时间x(小时)之间的函数关系,请写出你认为可能合理的代号,并直接写出折线中拐点A、B、C或A、B、C、D的坐标26某工厂现有甲种原料360千克,乙种原料290千克,计划用这两种原料全部生产A、B两种产品共50件,生产A、B两种产品与所需原料情况如下表所示:原料型号 甲种原料(千克) 乙种原料(千克) A产品(每件) 9 3 B产品(每件)
32、4 10(1)该工厂生产A、B两种产品有哪几种方案?(2)若生成一件A产品可获利80元,生产一件B产品可获利120元,怎样安排生产可获得最大利润?27荆州素有“鱼米之乡”的美称,某渔业公司组织20辆汽车装运鲢鱼、草鱼、青鱼共120吨去外地销售,按计划20辆汽车都要装运,每辆汽车只能装运同一种鱼,且必须装满,根据下表提供的信息,解答以下问题:鲢鱼草鱼青鱼每辆汽车载鱼量(吨)865每吨鱼获利(万元)0.250.30.2(1)设装运鲢鱼的车辆为x辆,装运草鱼的车辆为y辆,求y与x之间的函数关系式;(2)如果装运每种鱼的车辆都不少于2辆,那么怎样安排车辆能使此次销售获利最大?并求出最大利润28某家具商
33、场计划购进某种餐桌、餐椅进行销售,有关信息如表:原进价(元/张)零售价(元/张)成套售价(元/套)餐桌a270500元餐椅a11070已知用600元购进的餐桌数量与用160元购进的餐椅数量相同(1)求表中a的值;(2)若该商场购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餐椅的总数量不超过200张该商场计划将一半的餐桌成套(一张餐桌和四张餐椅配成一套)销售,其余餐桌、餐椅以零售方式销售请问怎样进货,才能获得最大利润?最大利润是多少?(3)由于原材料价格上涨,每张餐桌和餐椅的进价都上涨了10元,按照(2)中获得最大利润的方案购进餐桌和餐椅,在调整成套销售量而不改变销售价格的情况下,实际全部售
34、出后,所得利润比(2)中的最大利润少了2250元请问本次成套的销售量为多少?29某私营服装厂根据 市场分析,决定 调整服装制作方案,准备每周(按120工时计算)制作西服、休闲服、衬衣共360件,且衬衣至少60件已知每件服装的收入和所需工时如下表:服装名称西服休闲服衬衣工时/件收入(百元)/件321设每周制作西服x件,休闲服y件,衬衣z件(1)请你分别从件数和工时数两个方面用含有x,y的代数式表示衬衣的件数z(2)求y与x之间的函数关系式(3)问每周制作西服、休闲服、衬衣各多少件时,才能使总收入最高?最高总收入是多少?30云南某县境内发生地震,某市积极筹集救灾物资260吨从该市区运往该县甲、乙两
35、地,若用大、小两种货车共20辆,恰好能一次性运完这批物资已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如下表:车型运往地甲地(元/辆)乙地(元/辆)大货车720800小货车500650(1)求这两种货车各用多少辆?(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a辆,前往甲、乙两地的总运费为w元,求出w与a的函数关系式(写出自变量的取值范围);(3)在(2)的条件下,若运往甲地的物资不少于132吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费31甲、乙两车从A地前往B地,甲车行至AB的中点C处后,以原来速度的1.5倍继续行驶,在整个行程
36、中,汽车离开A地的距离y与时刻t的对应关系如图所示,求:(1)甲车何时到达C地;(2)甲车离开A地的距离y与时刻t的函数解析式;(3)乙车出发后何时与甲车相距20km32温州享有“中国笔都”之称,其产品畅销全球,某制笔企业欲将n件产品运往A,B,C三地销售,要求运往C地的件数是运往A地件数的2倍,各地的运费如图所示设安排x件产品运往A地(1)当n=200时,根据信息填表:A地B地C地合计产品件数(件)x2x200运费(元)30x若运往B地的件数不多于运往C地的件数,总运费不超过4000元,则有哪几种运输方案?(2)若总运费为5800元,求n的最小值33水龙头关闭不严会造成滴水,容器内盛水量w(
37、L)与滴水时间t(h)的关系用能够显示水量的容器做如图1的试验,并根据试验数据绘制出如图2的函数图象,结合图象解答下列问题(1)容器内原有水多少升?(2)求w与t之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升?34某经销商从市场得知如下信息:A品牌手表B品牌手表进价(元/块)700100售价(元/块)900160她计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A品牌手表x块,这两种品牌手表全部销售完后获得利润为y元(1)试写出y与x之间的函数关系式;(2)若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案?(3)选择哪种进货方案,该经销商
38、可获利最大?最大利润是多少元?35某校八年级举行“生活中的数学”数学小论文比赛活动,购买A、B两种笔记本作为奖品,这两种笔记本的单价分别是12元和8元,根据比赛设奖情况,需要购买两种笔记本共30本,若学校决定购买本次笔记本所需资金不能超过280元,设买A种笔记本x本(1)根据题意完成以下表格(用含x的代数式表示)笔记本型号AB数量(本)x价格(元/本)128售价(元)12x(2)那么最多能购买A笔记本多少本?(3)若购买B笔记本的数量要小于A笔记本的数量的3倍,则购买这两种笔记本各多少本时,费用最少,最少的费用是多少元?36某校准备组织师生共60人,从南靖乘动车前往厦门参加夏令营活动,动车票价
39、格如表所示:(教师按成人票价购买,学生按学生票价购买)运行区间成人票价(元/张)学生票价(元/张)出发站终点站一等座二等座二等座南靖厦门262216若师生均购买二等座票,则共需1020元 (1)参加活动的教师有人,学生有人;(2)由于部分教师需提早前往做准备工作,这部分教师均购买一等座票,而后续前往的教师和学生均购买二等座票设提早前往的教师有x人,购买一、二等座票全部费用为y元求y关于x的函数关系式;若购买一、二等座票全部费用不多于1032元,则提早前往的教师最多只能多少人?37库尔勒某乡A,B两村盛产香梨,A村有香梨200吨,B村有香梨300吨,现将这些香梨运到C,D两个冷藏仓库已知C仓库可
40、储存240吨,D仓库可储存260吨,从A村运往C,D两处的费用分别为每吨40元和45元;从B村运往C,D两处的费用分别为每吨25元和32元设从A村运往C仓库的香梨为x吨,A,B两村运香梨往两仓库的运输费用分别为yA元,yB元(1)请填写下表,并求出yA,yB与x之间的函数关系式;CD总计Ax吨200吨B300吨总计240吨260吨500吨(2)当x为何值时,A村的运费较少?(3)请问怎样调运,才能使两村的运费之和最小?求出最小值38谷歌人工智能AlphaGo机器人与李世石的围棋挑战赛引起人们的广泛关注,人工智能完胜李世石,某教学网站开设了有关人工智能的课程并策划了A,B两种网上学习的月收费方式
41、:收费方式月使用费/元包时上网时间/h超时费/(元/min)A7250.6B10500.8设小明每月上网学习人工智能课程的时间为x小时,方案A,B的收费金额分别为yA元,yB元(1)当x50时,分别求出yA,yB与x之间的函数关系式;(2)若小明3月份上该网站学习的时间为60小时,则她选择哪种方式上网学习合算?39小华观察钟面(图1),了解到钟面上的分针每小时旋转360度,时针毎小时旋转30度她为了进一步探究钟面上分针与时针的旋转规律,从下午2:00开始对钟面进行了一个小时的观察为了探究方便,她将分针与分针起始位置OP(图2)的夹角记为y1,时针与OP的夹角记为y2度(夹角是指不大于平角的角)
42、,旋转时间记为t分钟观察结束后,她利用获得的数据绘制成图象(图3),并求出y1与t的函数关系式:请你完成:(1)求出图3中y2与t的函数关系式;(2)直接写出A、B两点的坐标,并解释这两点的实际意义;(3)若小华继续观察一个小时,请你在题图3中补全图象40某商店经过调低价格的方式促销n个不同的玩具,调整后的单价y(元)与调整前的单价x(元)满足一次函数关系,如表:第1个第2个第3个第4个第n个调整前的单价x(元)x1x2=6x3=72x4xn调整后的单价y(元)y1y2=4y3=59y4yn已知这n个玩具调整后的单价都大于2元(1)求y与x的函数关系式,并确定x的取值范围;(2)某个玩具调整前
43、单价是108元,顾客购买这个玩具省了多少钱?(3)这n个玩具调整前、后的平均单价分别为,猜想与的关系式,并写出推导过程参考答案与试题解析一选择题(共3小题)1( 道外区一模)某工厂加工一批零件,为了提高工人工作积极性,工厂规定每名工人每次薪金如下:生产的零件不超过a件,则每件3元,超过a件,超过部分每件b元,如图是一名工人一天获得薪金y(元)与其生产的件数x(件)之间的函数关系式,则下列结论错误的是()Aa=20Bb=4C若工人甲一天获得薪金180元,则她共生产50件D若工人乙一天生产m(件),则她获得薪金4m元【分析】根据题意和函数图象能够求得a、b的值,从而能够判断选项A和B是否正确,根据
44、C和D的数据能够分别计算出题目中对应的数据是否正确,从而能够解答本题【解答】解:由题意和图象可得,a=603=20,故选项A正确,b=(14060)(4020)=8020=4,故选项B正确,若工人甲一天获得薪金180元,则她共生产:20+=20+30=50,故选项C正确,若工人乙一天生产m(件),当m20时,她获得的薪金为:3m元;当m20时,她获得的薪金为:60+(m20)4=(4m20)元,故选项D错误,故选D【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答2( 春巫溪县校级月考)在一次自行车越野赛中,甲乙两名选手行驶的路程y(千米)随时间x(分)变化的图象(全程)如图,根据图象判定下列结论不正确的是()A前30分钟,甲在乙的前面B这次比赛的全程是28千米C第48分钟时,两人第一次相遇D甲先到达终点【分析】根据函数的图象,图象上的点在上边则纵坐标大,即行驶的路程远,点在左边则对应的横坐标小,即时间小,据此即可判断【解答】解:A、根据图象可得在