资源描述
北师大版七年级数学上册达标试卷不含答案
(考试时间:120分钟,总分100分)
班级:__________ 姓名:__________ 分数:__________
一、单选题(每小题2分,共计30分)
1、从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图5所示的零件,则这个零件的表面积是( )
A .20 B .22 C .24 D .26
2、图中的几何体是由哪个图形绕虚线旋转一周得到的( )
A . B . C . D .
3、如图,有一个棱长是 的正方体,从它的一个顶点处挖去一个棱长是 的正方体后,剩下物体的表面积和原来的表面积相比较( )
A .变大了 B .变小了 C .没变 D .无法确定变化
4、与易拉罐类似的几何体是( )
A .圆锥 B .圆柱 C .棱锥 D .棱柱
5、生活中的实物可以抽象出各种各样的几何图形,如图所示蛋糕的形状类似于( )
A .圆柱体 B .球体 C .圆 D .圆锥体
6、将下左图中的三角形绕虚线旋转一周,所得的几何体是( ).
A . B . C . D .
7、如图,一个正方体的六个面上分别标有数字1,2,3,4,5,6.根据图中三种状态所显示的数字,正方体的正面“?”表示的数字是( )
A .1 B .2 C .3 D .6
8、将如图所示的Rt△ACB绕直角边AC旋转一周,所得几何体的主视图(正视图)是( )
A . B . C . D .
9、下列几何体中,含有曲面的有( )
A .1个 B .2个 C .3个 D .4个
10、下列图形属于立体图形的是( )
A .正方形 B .三角形 C .球 D .梯形
11、若要把2个长6分米、宽5分米、高2分米的相同的长方体物体一起包装起来,那么最少需要( )平方分米的包装纸。
A .208 B .148 C .128 D .188
12、下列几何体中,圆柱是( )
A . B . C . D .
13、如图所示的沙漏,可以看作是由下列所给的哪个平面图形绕虚线旋转一周而成的( )
A . B . C . D .
14、一个几何体由4个相同的小正方体搭成,从正面看和从左面看到的形状图如图所示,则原立体图形不可能是( )
A . B . C . D .
15、将下面左图直角三角形ABC绕直角边AC旋转一周,所得几何体从正面看是( )
A . B . C . D .
二、填空题(每小题4分,共计20分)
1、一个直棱柱共有21条棱,则这个直棱柱共有 个面.
2、如图,在一次数学活动课上,张明用17个边长为1的小正方形搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要个小立方体,王亮所搭几何体的表面积为 .
3、将长方形ABCD绕CD边旋转一周,得到的几何体是 .
4、下列平面图形中,将编号为(只需填写编号)的平面图形绕轴旋转一周,可得到图中所示的立体图形 .
5、一个长方形绕着它的一条边所在的直线旋转一周后所得到的立体图形是圆柱.( )
三、判断题(每小题2分,共计6分)
1、棱柱侧面的形状可能是一个三角形。( )
2、体是由面围成的( )
四、计算题(每小题4分,共计12分)
1、一个长方形的两边分别是2cm、3cm,若将这个长方形绕一边所在直线旋转一周后是一个什么几何体?请求出这个几何体的底面积和侧面积.
2、已知有一个长为5cm,宽为3cm的长方形,若以这个长方形的一边所在的直线为轴,将它旋转一周,你能求出所得的几何体的表面积吗?
3、我们知道,长方形绕着它的一边旋转形成圆柱体,圆柱体的侧面展开图为长方形,现将一个长、宽分别为4cm和3cm的长方形绕着它的宽旋转一周,求形成的圆柱体的表面积.
五、解答题(每小题4分,共计32分)
1、长和宽分别是4cm和2cm的长方体分别沿长、宽所在直线旋转一周得到两个几何体,哪个几何体的体积大?为什么?
2、写出下图中各个几何体的名称,并按锥体和柱体把它们分类.
3、一个直角三角尺的两条直角边长是6和8,它的斜边长是10,将这个三角尺绕着它的一边所在的直线旋转一周.(温馨提示:①结果用π表示;②你可能用到其中的一个公式,V圆柱=πr2h,V球体=πR3 , V圆锥=πr2h).
(1)如果绕着它的斜边所在的直线旋转一周形成的几何体是 .
(2)如果绕着它的直角边6所在的直线旋转一周形成的几何体的体积是多少?
(3)如果绕着斜边10所在的直线旋转一周形成的几何体的体积与绕着直角边8所在的直线旋转一周形成的几何体的体积哪个大?
4、把下列几何图形与相应的名称用线连起来:
5、在小学,我们曾学过圆柱的体积计算公式:v=πR2h (R是圆柱底面半径,h为圆柱的高).现有一个长方形,长为2cm.宽为1cm,分别以它的两边所在的直线为轴旋转一周.得到的几何体的体积分别是多少?它们之间有何关系?
6、如图,正方形 的边长为 ,以直线 为轴,将正方形旋转一周,所得几何体的表面积是多少?(结果保留 )
7、如图,各图中的阴影图形绕着直线I旋转360°,各能形成怎样的立体图形?
8、如图所示,画一个长和宽分别为6cm、4cm的长方形,并将其按一定的方式进行旋转.
(1)你能得到几种不同的圆柱体?
(2)把一个平面图形旋转成几何体,必须明确哪两个条件?
展开阅读全文