资源描述
北师大版七年级数学上册月考试卷【可编辑】
(考试时间:120分钟,总分100分)
班级:__________ 姓名:__________ 分数:__________
一、单选题(每小题2分,共计30分)
1、如图,是由一些棱长为1cm的小正方体构成的立体图形的三种视图,那么这个立体图形的表面积是( )
A .12 B .14 C .16 D .18
2、下列图形中,绕铅垂线旋转一周可得到如图所示几何体的是( )
A . B . C . D .
3、如图,将直角三角形绕其斜边旋转一周,得到的几何体为( )
A . B . C . D .
4、下列图形是棱锥的是( )
A . B . C . D .
5、将一个直角三角形绕它的直角边旋转一周得到的几何体是( )
A . B . C . D .
6、下列几何体中与其余三个不属于同一类几何体的是( )
A . B . C . D .
7、下面几何体中,是长方体的为( )
A . B .
C . D .
8、下列说法中正确的是( )
A .四棱锥有4个面
B .连接两点间的线段叫做两点间的距离
C .如果线段 ,则M是线段AB的中点
D .射线 和射线 不是同一条射线
9、圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列四个选项绕直线旋转一周可以得到如图立体图形的是( )
A . B . C . D .
10、用钢笔写字是一个生活中的实例,用数学原理分析,它所属于的现象是( )
A .点动成线 B .线动成面 C .线线相交 D .面面相交
11、某几何体的三视图如图所示;则该几何体的表面积为( )
A .6 +6+2 B .18+2 C .3 D .6
12、如图,有一个棱长是 的正方体,从它的一个顶点处挖去一个棱长是 的正方体后,剩下物体的表面积和原来的表面积相比较( )
A .变大了 B .变小了 C .没变 D .无法确定变化
13、有一个棱长为5的正方体木块,从它的每一个面看都有一个穿透的完全相同的孔(如图中的阴影部分),则这个立体图形的内、外表面的总面积是 ( )
A .192 B .216 C .218 D .225
14、下面图形中,以直线为轴旋转一周,可以得到圆柱体的是( )
A . B . C . D .
15、下列图形中,不是柱体的是( )
A . B . C . D .
二、填空题(每小题4分,共计20分)
1、一只小蚂蚁从如图所示的正方体的顶点A沿着棱爬向有蜜糖的点B,它只能经过三条棱,请你数一数,小蚂蚁有 种爬行路线.
2、如图,在长方体ABCD﹣EFGH中,与面ADHE与面ABFE都垂直的面是 .
3、如图,在棱长分别为 、 、 的长方体中截掉一个棱长为 的正方体,则剩余几何体的表面积为 .
4、为了致敬抗疫一线最美逆行者,小明用棱长为1的小立方块粘接成了一个如图所示的几何体.从它的每一个面看都有一个穿透的完全相同的“十字孔”(阴影部分),则这个几何体(含内部)的表面积是 。
5、如图,在长方体 ABCD -EFGH中,与棱CD异面的棱有 条.
三、判断题(每小题2分,共计6分)
1、棱柱侧面的形状可能是一个三角形。( )
2、体是由面围成的( )
四、计算题(每小题4分,共计12分)
1、有一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱.现在有一个长为6cm,宽为5cm的长方形,分别绕它的长、宽所在直线旋转一周,得到不同的圆柱,它们的体积分别是多大?
2、我们知道,长方形绕着它的一边旋转形成圆柱体,圆柱体的侧面展开图为长方形,现将一个长、宽分别为4cm和3cm的长方形绕着它的宽旋转一周,求形成的圆柱体的表面积.
3、已知有一个长为5cm,宽为3cm的长方形,若以这个长方形的一边所在的直线为轴,将它旋转一周,你能求出所得的几何体的表面积吗?
五、解答题(每小题4分,共计32分)
1、已知Rt△ABC的斜边AB=13cm,一条直角边AC=5cm,以直线AB为轴旋转一周得一个几何体.求这个几何体的表面积.
2、在直角三角形,两条直角边分别为6cm,8cm,斜边长为10cm,若分别以一边旋转一周(①结果用π表示;②你可能用到其中的一个公式,V圆柱=πr2h,V球体= , V圆锥=h)
(1)如果绕着它的斜边所在的直线旋转一周形成的几何体是?
(2)如果绕着它的直角边6所在的直线旋转一周形成的几何体的体积是多少?
(3)如果绕着它的斜边10所在的直线旋转一周形成的几何体的体积与绕着直角边8所在的直线旋转一周形成的几何体的体积哪个大?
3、把一张边长为40 cm的正方形硬纸板,进行适当的裁剪,折成一个长方体盒子(纸板的厚度忽略不计).
(1)如图,若在正方形硬纸板的四角各剪掉一个同样大小的正方形,将剩余部分折成一个无盖的长方体盒子.
①要使折成的长方体盒子的底面积为484 cm2 , 那么剪掉的正方形的边长为多少?
②折成的长方体盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由.
(2)若在正方形硬纸板的四周剪掉一些矩形(即剪掉的矩形至少有一条边在正方形硬纸板的边上),将剩余部分折成一个有盖的长方体盒子.若折成的一个长方体盒子的表面积为550 cm2 , 求此时长方体盒子的长、宽、高(只需求出符合要求的一种情况).
4、如图,把一个木制正方体的表面涂上颜色,然后将正方体的棱分成相等的四份,并做上标记,得到许多小正方体.问
(1)有 个小正方体;
(2)有 个小正方体只有两面涂有颜色
(3)有 个小正方体只有3面都涂了颜色.
(4)有 个小正方体6面都未涂色.
5、如图,是一个几何体从正面、左面、上面看得到的平面图形,判断下面说法的正误(正确的在括号内划△,错误的在括号内划▲)
(1)这是一个棱锥 .
(2)这个几何体有4个面 .
(3)这个几何体有5个顶点 .
(4)这个几何体有8条棱 .
(5)请你再说出一个正确的结论 .
6、“赶陀螺”是一项深受人们喜爱的民族性运动,如图所示是一个陀螺的立体结构图.已知底面圆的直径 ,圆柱体部分的高 ,圆锥体部分的高 ,求出这个陀螺的表面积(结果保留 ).
7、如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长.
小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题.
请按照小萍的思路,探究并解答下列问题:
(1)分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,求证:四边形AEGF是正方形;
(2)设AD=x,建立关于x的方程模型,求出x的值.
8、在一块长为 ,宽为 的长方形铁片的四个角都剪去一个边长为 的小正方形,然后折成一个无盖的盒子,求这个盒子的表面积(用含 、 的代数式表示).
展开阅读全文