1、自学考试线性代数试卷及答案资料仅供参考 10月高等教育自学考试全国统一命题考试04184线性代数(经管类)试卷本试卷共8页,满分100分,考试时间150分钟。说明:本试卷中,表示矩阵的转置矩阵,表示矩阵的伴随矩阵,是单位矩阵,表示方阵的行列式,表示矩阵的秩。一、 单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。1. 设3阶行列式=2,若元素的代数余子公式为(i,j=1,2,3),则 【 】A. B.0 C.1 D.22. 设为3阶矩阵,将的第3行乘以得到单位矩阵,则=【 】A. B. C
2、. D.23. 设向量组的秩为2,则中 【 】A. 必有一个零向量 B. B.任意两个向量都线性无关C.存在一个向量可由其余向量线性表出 D.每个向量均可由其余向量线性表出4. 设3阶矩阵,则下列向量中是的属于特征值的特征向量为 【 】A. B. C. D.5. 二次型的正惯性指数为 【 】A.0 B.1 C.2 D.3二、 填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。错误、不填均无分、6. 设,则方程的根是 7. 设矩阵,则= 8. 设为3阶矩阵,,则行列式= 9. 设矩阵,若矩阵满足,则= 10. 设向量,则由线性表出的表示式为 11. 设向量组线性相关
3、,则数 12. 3元齐次线性方程组的基础解系中所含解向量的个数为 13. 设3阶矩阵满足,则必有一个特征值为 14. 设2阶实对称矩阵的特征值分别为和1,则 15. 设二次型正定,则实数的取值范围是 三、 计算题(本大题共7小题,每小题9分,共63分)16. 计算4阶行列式的值。17. 已知矩阵,求。18. 设矩阵,且矩阵满足,求。19. 设向量,试确定当取何值时能由线性表出,并写出表示式。20. 求线性方程组的通解(要求用其一个特解和导出组的基础解系表示)。21. 设矩阵与对角矩阵相似,求数与可逆矩阵,使得。22. 用正交变换将二次型化为标准形,写出标准形和所作的正交变换。四、证明题(本题7
4、分)23.设向量组线性相关,且其中任意两个向量都线性无关。证明:存在全不为零的常数使得。 10月高等教育自学考试全国统一命题考试线性代数(经管类)试题答案及评分参考(课程代码04184)一、 单项选择题(本大题共5小题,每小题2分,共10分)1. D 2.A 3.C 4.B 5.C二、 填空题(本大题共10小题,每小题2分,共20分)6. 57. 8.9.10.11.12.13.14.15. 三、 计算题(本大题共7小题,每小题9分,共63分)16. 解 = .3分 .9分17. 解 .2分 .7分从而 .9分18. 解 由,得 .2分又由可逆 .5分由,可得两边左乘,得到 .9分19解 设,
5、 .2分该线性方程组的增广矩阵为 .6分由于能有线性表出,则必有此时,方程组有唯一解表示式为 .9分20. 解 方程组的增广矩阵 .2分可知4,方程组有无穷多解 .4分由同解方程组求出方程组的一个特解,导出组的一个基础解系为 .7分从而方程组的通解为为任意常数) .9分21. 解 由条件可知矩阵的特征值为 .2分 由,得 .4分对于,由线性方程组求得一个特征向量为 对于,由线性方程组求得两个线性无关的特征向量为 令,则 .9分22. 解 二次型的矩阵 .2分由故的特征值为 .4分对于,求解齐次线性方程组,得到基础解系 将其单位化,得 .7分令,则为正交矩阵,经正交变换,化二次型为标准形 .9分四、 证明题(本题7分)23. 证 由于向量组线性相关,故存在不全为零的常数,使得 .2分其中必有。否则,如果,则上式化为其中不全为零,由此推出线性相关,与向量组中任意两个向量都线性无关的条件矛盾 .5分类似地,可证明 .7分