1、 第6章 超静定结构的内力计算6.1力力 法法位位 移移 法法力矩分配法力矩分配法习习 题题本章内容本章内容 第6章 超静定结构的内力计算6.2 教学要求:教学要求:本章要求学生了解简单超静定结构的计算原理。掌握本章要求学生了解简单超静定结构的计算原理。掌握超静定结构的受力特性和超静定次数的判断。能用力法、位移法、力超静定结构的受力特性和超静定次数的判断。能用力法、位移法、力矩分配法求解简单超静定结构。矩分配法求解简单超静定结构。第6章 超静定结构的内力计算6.3力力 法法一、一、超静定结构超静定结构 超静定结构,如图超静定结构,如图6.1所示,又称静不定结构。它是工程实际中常用的一类结构。其
2、几何组所示,又称静不定结构。它是工程实际中常用的一类结构。其几何组成特征是具有多余约束的几何不变体系;其静力解答特征是它的支座反力和各截面的内力不能成特征是具有多余约束的几何不变体系;其静力解答特征是它的支座反力和各截面的内力不能完全由静力平衡条件求出,必须补充变形条件。完全由静力平衡条件求出,必须补充变形条件。图图6.1 超静定结构超静定结构 超静定结构的类型主要有以下几种。超静定结构的类型主要有以下几种。(1)超静定梁,如图超静定梁,如图6.2所示。所示。(2)超静定刚架,如图超静定刚架,如图6.3所示。所示。(3)超静定拱,如图超静定拱,如图6.4所示。所示。图图6.2 超静定梁超静定梁
3、图图6.3 超静定刚架超静定刚架图图6.4 超静定拱超静定拱 第6章 超静定结构的内力计算6.4力力 法法 (4)超静定桁架,如图超静定桁架,如图6.5所示。所示。(5)超静定组合结构,如图超静定组合结构,如图6.6所示。所示。图图6.5 超静定桁架超静定桁架图图6.6 超静定组合结构超静定组合结构 超静定结构的计算方法很多,依据基本未知量选择的不同可以分为两类:一类是以多余未超静定结构的计算方法很多,依据基本未知量选择的不同可以分为两类:一类是以多余未知力为未知量的力法,即本节将要介绍的;另一类是以结点位移为未知量的位移法。其他的计知力为未知量的力法,即本节将要介绍的;另一类是以结点位移为未
4、知量的位移法。其他的计算方法大多由这两种方法派生而来,比如力矩分配法等。算方法大多由这两种方法派生而来,比如力矩分配法等。二、二、超静定次数的确定超静定次数的确定 超静定结构多余约束力的数目,称为超静定次数。超静定结构多余约束力的数目,称为超静定次数。结构的超静定次数可以这样来确定:如果结构去掉结构的超静定次数可以这样来确定:如果结构去掉 个多余约束后即变为静定结构,则该结个多余约束后即变为静定结构,则该结构的超静定次数就为构的超静定次数就为。解除超静定结构多余约束的方法主要有如下几种:解除超静定结构多余约束的方法主要有如下几种:(1)去掉一根支杆或切断一根链杆,相当于解除一个约束去掉一根支杆
5、或切断一根链杆,相当于解除一个约束(如图如图6.7(a)、(b)所示所示)。第6章 超静定结构的内力计算6.5力力 法法 (2)去掉一个固定铰支座或切开一个单铰,相当于解除两个约束去掉一个固定铰支座或切开一个单铰,相当于解除两个约束(如图如图6.7(c)、(d)所示所示)。(3)去掉一个固定支座或切断一根梁式杆件,相当于解除三个约束去掉一个固定支座或切断一根梁式杆件,相当于解除三个约束(如图如图6.7(e)、(f)所示所示)。(4)将固定支座改为固定铰支座或将梁式杆件中某截面加一单铰将固定支座改为固定铰支座或将梁式杆件中某截面加一单铰(刚结改成铰结刚结改成铰结),相当于解,相当于解除一个约束除
6、一个约束(如图如图6.7(g)、(h)所示所示)。注意:注意:(1)不能去掉必要约束,使剩余结构成为几何可变体系;不能去掉必要约束,使剩余结构成为几何可变体系;(2)应把多余约束全部去掉,不能应把多余约束全部去掉,不能只是去掉其中的一部分。运用该方法确定超静定结构的超静定次数时,应尽量使解除多余约束只是去掉其中的一部分。运用该方法确定超静定结构的超静定次数时,应尽量使解除多余约束后的静定结构为我们所熟悉的简支梁、悬臂梁等形式。后的静定结构为我们所熟悉的简支梁、悬臂梁等形式。图图6.7 解除超静定结构多余约束解除超静定结构多余约束 第6章 超静定结构的内力计算6.6力力 法法 【例例6.1】确定
7、如图确定如图6.8(a)所示结构的超静定次数。所示结构的超静定次数。图图6.8 超静定结构超静定结构解解 此结构去掉与地面相连的三根支杆后,桁架内部可看做两刚片此结构去掉与地面相连的三根支杆后,桁架内部可看做两刚片(如图如图6.8(b)所示所示)用四根链杆相用四根链杆相连,是一次超静定结构。欲使其成为静定结构,在这四根链杆中任意去掉一根都可以。形成的连,是一次超静定结构。欲使其成为静定结构,在这四根链杆中任意去掉一根都可以。形成的静定结构如图静定结构如图6.8(c)所示,被截断的杆件的作用力以一对多余未知力所示,被截断的杆件的作用力以一对多余未知力X1代替。代替。三、三、力法的基本原理与力法的
8、典型方程力法的基本原理与力法的典型方程 现以一个二次超静定刚架为例,说明力法的基本原理以及如何建立多次超静定结构的力法现以一个二次超静定刚架为例,说明力法的基本原理以及如何建立多次超静定结构的力法方程;再进一步推广到方程;再进一步推广到 次超静定结构,得到力法典型方程。次超静定结构,得到力法典型方程。如图如图6.9所示的刚架为二次超静定结构,分析时必须解除两个多余约束。现去掉铰支座所示的刚架为二次超静定结构,分析时必须解除两个多余约束。现去掉铰支座A,相应的代以多余约束力相应的代以多余约束力X1,X2得到如图得到如图6.9(b)所示的基本体系,由于原结构在支座所示的基本体系,由于原结构在支座A
9、 处没有水平处没有水平位移和竖向位移,因此,基本结构在荷载和多余未知力位移和竖向位移,因此,基本结构在荷载和多余未知力X1、X2 的共同作用下,铰支座的共同作用下,铰支座A 处也没处也没有水平位移和竖向位移。即有水平位移和竖向位移。即A 点沿点沿X1 和和X2 方向的位移:方向的位移:第6章 超静定结构的内力计算6.7力力 法法 1 0 ,20 图图6.9 力法解二次超静定刚架力法解二次超静定刚架 第6章 超静定结构的内力计算6.8力力 法法 设各单位未知力设各单位未知力X1=1、X2=1 和荷载分别作用于基本结构上,和荷载分别作用于基本结构上,A点沿点沿X1 方向的位移分别为方向的位移分别为
10、11、12、1P;沿;沿X2 方向的位移分别为方向的位移分别为21、22、2P(如图如图6.9(c)、(d)、(e)所示。根据叠加原所示。根据叠加原理,上述位移条件可表示为:理,上述位移条件可表示为:这就是二次超静定结构的力法方程式。这就是二次超静定结构的力法方程式。对于对于n 次超静定结构,相应地有次超静定结构,相应地有n 个多余未知力,而对每一个多余未知力结构总有一个已知个多余未知力,而对每一个多余未知力结构总有一个已知的位移条件与之相对应,故可建立一个含有的位移条件与之相对应,故可建立一个含有n 个未知量的方程组,从而可以求解出个未知量的方程组,从而可以求解出n 个多余约束个多余约束力。
11、力。(6-1)第6章 超静定结构的内力计算6.9力力 法法 式式(6-1)通常称为力法典型方程,其物理意义是:基本结构在多余未知力和荷载共同作用下,通常称为力法典型方程,其物理意义是:基本结构在多余未知力和荷载共同作用下,多余约束处的位移和原来超静定结构相应的位移相等。多余约束处的位移和原来超静定结构相应的位移相等。在上述方程中,主对角线上未知力的系数在上述方程中,主对角线上未知力的系数ii(i=1,2,n)称为主系数,它代表单位未知称为主系数,它代表单位未知力力Xi=1 单独作用在基本结构上时,在单独作用在基本结构上时,在i 处沿处沿Xi 自身方向上所引起的位移,其值恒为正。其余的自身方向上
12、所引起的位移,其值恒为正。其余的系数系数ij(ij)称为副系数,它代表基本结构在未知力称为副系数,它代表基本结构在未知力Xi 处,由未知力处,由未知力Xj=1 单独作用时引起的沿单独作用时引起的沿Xi 方向的位移。自由项方向的位移。自由项iP 表示外荷载表示外荷载(或温度改变、支座移动或温度改变、支座移动)作用下,基本结构沿未知力作用下,基本结构沿未知力Xi 方向所引起的位移。副系数方向所引起的位移。副系数ij(ij)和自由项和自由项iP 的值可以为正、负或零。根据位移互等定理,的值可以为正、负或零。根据位移互等定理,副系数存在以下关系:副系数存在以下关系:ij=ji 典型方程中的各系数和自由
13、项,都是基本结构在已知力作用下的位移计算,完全可以通过典型方程中的各系数和自由项,都是基本结构在已知力作用下的位移计算,完全可以通过静定结构的位移计算求出。静定结构的位移计算求出。将求得的系数与自由项代入力法典型方程,解出各多余未知力将求得的系数与自由项代入力法典型方程,解出各多余未知力X1,X2,Xn然后将已求然后将已求得的多余未知力和荷载共同作用在基本结构上,利用平衡条件,求出其余的反力和内力。在绘得的多余未知力和荷载共同作用在基本结构上,利用平衡条件,求出其余的反力和内力。在绘制原结构的最后内力图时,可利用基本结构的单位内力图与荷载内力图按叠加法得到,即:制原结构的最后内力图时,可利用基
14、本结构的单位内力图与荷载内力图按叠加法得到,即:第6章 超静定结构的内力计算6.10力力 法法(6-2)式中,式中,分别为单位未知力分别为单位未知力Xi=1作用在基本结构上的弯矩、剪力和轴力;作用在基本结构上的弯矩、剪力和轴力;分别分别为外荷载作用在基本结构上的弯矩、剪力和轴力。为外荷载作用在基本结构上的弯矩、剪力和轴力。四、四、简单超静定结构的力法计算简单超静定结构的力法计算 用力法计算超静定结构可按下列步骤进行:用力法计算超静定结构可按下列步骤进行:(1)确定超静定次数,去掉多余约束并以多余未知力代替,得到原结构的基本体系。确定超静定次数,去掉多余约束并以多余未知力代替,得到原结构的基本体
15、系。(2)根据基本结构在多余未知力和荷载共同作用下,在所去掉各多余约束处的位移与原结构根据基本结构在多余未知力和荷载共同作用下,在所去掉各多余约束处的位移与原结构相应位移相等的条件,建立力法的典型方程。相应位移相等的条件,建立力法的典型方程。(3)依次做出基本结构在各单位未知力和荷载单独作用下的内力图,然后利用积分法依次做出基本结构在各单位未知力和荷载单独作用下的内力图,然后利用积分法(或图乘或图乘法法)计算典型方程中的各个系数以及自由项。计算典型方程中的各个系数以及自由项。(4)求解典型方程,得出各多余未知力。求解典型方程,得出各多余未知力。(5)按照分析静定结构的方法,由平衡条件和叠加原理
16、绘制结构的内力图。按照分析静定结构的方法,由平衡条件和叠加原理绘制结构的内力图。(6)校核。校核。第6章 超静定结构的内力计算6.11力力 法法 下面结合具体例子说明力法的运用。下面结合具体例子说明力法的运用。【例【例6.2】用力法计算如图用力法计算如图6.10(a)所示的刚架,各杆的所示的刚架,各杆的EI 相等且为常数,绘制内力图。相等且为常数,绘制内力图。图图6.10 超静定刚架超静定刚架解解 (1)由几何组成分析知,该结构是二次超静定结构,去掉处的两个多余约束,得到基本结由几何组成分析知,该结构是二次超静定结构,去掉处的两个多余约束,得到基本结构,如图构,如图6.10(b)所示。所示。第
17、6章 超静定结构的内力计算6.12力力 法法 (2)由已知点的位移条件,列出力法的典型方程:由已知点的位移条件,列出力法的典型方程:(3)作基本体系的作基本体系的 图,利用图乘法求系数和自由项,并解方程求得图,利用图乘法求系数和自由项,并解方程求得X1、X2。第6章 超静定结构的内力计算6.13力力 法法 将各系数、自由项代入典型方程,得将各系数、自由项代入典型方程,得 (4)由公式由公式 求各截面弯矩值,并绘制弯矩图,如图求各截面弯矩值,并绘制弯矩图,如图6.11(a)所示。所示。图图6.11 内力图内力图 第6章 超静定结构的内力计算6.14力力 法法 (5)根据最后弯矩图根据最后弯矩图(
18、如图如图6.11(a)所示所示),取隔离体,由平衡条件求得各杆端剪力和轴力,取隔离体,由平衡条件求得各杆端剪力和轴力,并作并作Q 图图、N图,如图图,如图6.11(b)、(c)所示。所示。取取AC,如图,如图6.12(a)所示,分别由所示,分别由MA=0,x=0,y=0,得,得 取取CB,如图,如图6.12(b)所示,分别由所示,分别由MB=0,x=0,得:,得:取取C结点,如图结点,如图6.12(c)所示,由所示,由y=0 得:得:取结点取结点B,由,由X=0 ,已知,已知 得得 图图6.12 求各杆轴力及剪力求各杆轴力及剪力 第6章 超静定结构的内力计算6.15力力 法法 同一超静定结构在
19、求解时可选择各种不同形式的基本结构,结果必然相同。同一超静定结构在求解时可选择各种不同形式的基本结构,结果必然相同。五、五、超静定结构在温度变化、支座移动时的内力计算超静定结构在温度变化、支座移动时的内力计算 对于超静定结构,即使没有荷载作用时也可能产生内力,如支座移动、温度变化以及制造对于超静定结构,即使没有荷载作用时也可能产生内力,如支座移动、温度变化以及制造装配方面的误差都可以引起结构的内力。用力法计算由于支座移动、温度变化等引起结构的内装配方面的误差都可以引起结构的内力。用力法计算由于支座移动、温度变化等引起结构的内力时,其基本思路、原理和步骤与荷载作用下的内力计算基本相同,不同的只是
20、力法的典型方力时,其基本思路、原理和步骤与荷载作用下的内力计算基本相同,不同的只是力法的典型方程中自由项的计算。以下只以支座移动时的计算为例来讲述。程中自由项的计算。以下只以支座移动时的计算为例来讲述。【例例6.3】如图如图6.13(a)所示的等截面梁所示的等截面梁,已知,已知 端支座转动角度为端支座转动角度为,端支座下沉位移端支座下沉位移。试求。试求梁的弯矩图。梁的弯矩图。图图6.13 例例6.3图图 第6章 超静定结构的内力计算6.16力力 法法解解 (1)AB为一次超静定梁,去掉为一次超静定梁,去掉B支座多余约束,代以多余约束反力支座多余约束,代以多余约束反力X1,基本体系如图,基本体系
21、如图6.13(b)所示。所示。(2)在在X1 和和、a共同作用下,基本体系与原结构受力相同。为了使两者变形也相同,必须共同作用下,基本体系与原结构受力相同。为了使两者变形也相同,必须令基本体系在多余约束处的位移与原结构相同,即:令基本体系在多余约束处的位移与原结构相同,即:针对基本体系讨论针对基本体系讨论B点的竖直位移:点的竖直位移:1a,负号表示支座位移,负号表示支座位移a与与X1 所设方向相反。所设方向相反。11X1 1c a 由图由图6.13(c)知:知:1c=l,负号表示,负号表示1c 与与X1 假设方向相反。假设方向相反。由基本结构由基本结构 图图(如图如图6.13(d)所示所示)得
22、到:得到:代入力法方程,得:代入力法方程,得:(3)求内力。原超静定结构内力与基本体系相同,而支座移动在基本体系求内力。原超静定结构内力与基本体系相同,而支座移动在基本体系(静定结构静定结构)中不引中不引起内力,所以最后弯矩为:起内力,所以最后弯矩为:第6章 超静定结构的内力计算6.17力力 法法 原结构的弯矩图如图原结构的弯矩图如图6.13(e)所示。所示。由此可以看出,计算超静定结构由于支座移动引起的内力时,其力法方程右端项应等于原由此可以看出,计算超静定结构由于支座移动引起的内力时,其力法方程右端项应等于原结构相应处的位移,而自由项为基本结构由于支座移动产生的与多余未知力相应的位移。该两
23、结构相应处的位移,而自由项为基本结构由于支座移动产生的与多余未知力相应的位移。该两项可直接由基本结构中变形关系求出。结构的最后内力全部由多余未知力引起。项可直接由基本结构中变形关系求出。结构的最后内力全部由多余未知力引起。六、六、超静定结构的位移计算超静定结构的位移计算 超静定结构的力法计算的基本思想是利用静定的基本体系来计算多余未知力,基本体系的超静定结构的力法计算的基本思想是利用静定的基本体系来计算多余未知力,基本体系的内力、变形与原来超静定结构完全相同。因此,在求解超静定结构的位移时,仍可以借助于基内力、变形与原来超静定结构完全相同。因此,在求解超静定结构的位移时,仍可以借助于基本体系,
24、把已求出的多余力当作主动力来看待,采用前面的静定结构求位移的方法即可以求出本体系,把已求出的多余力当作主动力来看待,采用前面的静定结构求位移的方法即可以求出基本体系的位移,该位移也就是原来超静定结构中相应的位移。求超静定结构的位移仍可用单基本体系的位移,该位移也就是原来超静定结构中相应的位移。求超静定结构的位移仍可用单位荷载法,单位力可加在原结构上,也可加在它的任一静定基本结构上。位荷载法,单位力可加在原结构上,也可加在它的任一静定基本结构上。超静定结构有不同于静定结构的一些特性:超静定结构有不同于静定结构的一些特性:(1)由于存在多余约束,超静定结构的内力仅由静力平衡条件不能确定,必须同时考
25、虑变形由于存在多余约束,超静定结构的内力仅由静力平衡条件不能确定,必须同时考虑变形条件才能求出,因此超静定结构的内力与材料性质和截面尺寸有关,即与杆件的刚度有关。条件才能求出,因此超静定结构的内力与材料性质和截面尺寸有关,即与杆件的刚度有关。七、七、超静定结构的特性超静定结构的特性 第6章 超静定结构的内力计算6.18力力 法法 (2)由于存在多余约束,超静定结构在温度变化和支座位移等因素的影响下一般会产生内力;由于存在多余约束,超静定结构在温度变化和支座位移等因素的影响下一般会产生内力;而静定结构除在荷载作用下会产生内力外,在其他因素影响下不会产生内力。这一特性在一定而静定结构除在荷载作用下
26、会产生内力外,在其他因素影响下不会产生内力。这一特性在一定条件下对超静定结构带来不利影响,例如,连续梁当地基基础发生不均匀沉降时,会使结构产条件下对超静定结构带来不利影响,例如,连续梁当地基基础发生不均匀沉降时,会使结构产生过大的附加内力。但另一方面也可以利用这一特性,通过改变支座的高度来调整结构的内力,生过大的附加内力。但另一方面也可以利用这一特性,通过改变支座的高度来调整结构的内力,使其得到合理的内力分布。使其得到合理的内力分布。(3)由于存在多余约束,超静定结构的刚度一般比相应静定结构的刚度要大些,而内力和位由于存在多余约束,超静定结构的刚度一般比相应静定结构的刚度要大些,而内力和位移的
27、峰值则小些,且分布趋于均匀。移的峰值则小些,且分布趋于均匀。(4)超静定结构在多余约束破坏后,体系仍然是几何不变体系,能继续承受荷载;而静定结超静定结构在多余约束破坏后,体系仍然是几何不变体系,能继续承受荷载;而静定结构中任何一个约束被破坏后,体系成为几何可变从而丧失了承载能力。因此在抗震防灾、国防构中任何一个约束被破坏后,体系成为几何可变从而丧失了承载能力。因此在抗震防灾、国防建设等方面,超静定结构具有较好的抵抗破坏的能力。建设等方面,超静定结构具有较好的抵抗破坏的能力。第6章 超静定结构的内力计算6.19位位 移移 法法一、一、位移法的基本概念位移法的基本概念 用位移法分析结构时,先将结构
28、离散成单个的杆件,进行杆件受力分析,然后考虑变形协用位移法分析结构时,先将结构离散成单个的杆件,进行杆件受力分析,然后考虑变形协调条件和平衡条件,将杆件在结点处组装成整体结构。调条件和平衡条件,将杆件在结点处组装成整体结构。如图如图6.14(a)所示的结构在荷载的作用下发生如图中虚线所示的变形,由于结点所示的结构在荷载的作用下发生如图中虚线所示的变形,由于结点 为刚结点,为刚结点,杆件杆件AB、AC 在结点在结点A处有相同的转角处有相同的转角A。此外,如果不考虑杆件的轴向变形和剪切变形,并。此外,如果不考虑杆件的轴向变形和剪切变形,并假定弯曲变形是微小的,则可以假定受弯直杆两端之间的距离在变形
29、后仍然保持不变,故结点假定弯曲变形是微小的,则可以假定受弯直杆两端之间的距离在变形后仍然保持不变,故结点 A无线位移。考查每根杆件的变形情况,可以做出各杆的变形图无线位移。考查每根杆件的变形情况,可以做出各杆的变形图(如图如图6.14(b)所示所示)。其中。其中AB杆相杆相当于一端固定、另一端铰支的单跨梁,除承受荷载作用外,固定支座当于一端固定、另一端铰支的单跨梁,除承受荷载作用外,固定支座A 还产生了转角还产生了转角A。杆件。杆件 相当于两端固定的单跨梁,固定端相当于两端固定的单跨梁,固定端 产生了转角产生了转角。这些单跨超静定梁在支座位移和荷载作用下的。这些单跨超静定梁在支座位移和荷载作用
30、下的反力和内力可以用力法求得,不过,这里的转角反力和内力可以用力法求得,不过,这里的转角A 对于对于AB、AC 杆都是未知的。因此,对整个杆都是未知的。因此,对整个结构来说,求解的关键是如何确定转角结构来说,求解的关键是如何确定转角A。图图6.14 位移法分析结构位移法分析结构 第6章 超静定结构的内力计算6.20位位 移移 法法 如图如图6.15所示的结构在受外荷载作用后,各杆的变形如图中虚线所示,结点所示的结构在受外荷载作用后,各杆的变形如图中虚线所示,结点A、B处除了产处除了产生角位移外,还产生水平位移,由于变形很小,而且假定杆在弯曲后两端的距离不变,可以认生角位移外,还产生水平位移,由
31、于变形很小,而且假定杆在弯曲后两端的距离不变,可以认为为A、B两节点只有水平位移且两点的水平位移两节点只有水平位移且两点的水平位移相等。因此结构既有角位移相等。因此结构既有角位移A、B,又有线,又有线位移位移。图图6.15 结构变形结构变形 以上两个例子说明,只要结构的某些角位移、线位移先行求出,则各杆的内力可以完全确以上两个例子说明,只要结构的某些角位移、线位移先行求出,则各杆的内力可以完全确定。如把结点位移作为基本未知量,由这些结点位移可求上述各单杆内力和约束反力,由它们定。如把结点位移作为基本未知量,由这些结点位移可求上述各单杆内力和约束反力,由它们组装成原结构时应满足结点的平衡条件,从
32、而可得到确定这些未知位移的方程。由此,位移法组装成原结构时应满足结点的平衡条件,从而可得到确定这些未知位移的方程。由此,位移法分析中应解决以下几个问题:分析中应解决以下几个问题:第6章 超静定结构的内力计算6.21位位 移移 法法 (1)以结构的哪些结点位移为基本未知量。以结构的哪些结点位移为基本未知量。(2)确定杆件的杆端力与杆端位移以及荷载之间的关系。确定杆件的杆端力与杆端位移以及荷载之间的关系。(3)建立求解基本未知量的位移法方程。建立求解基本未知量的位移法方程。二、二、等截面直杆的转角位移方程等截面直杆的转角位移方程 如前所述,用位移法计算超静定结构时,把杆件当作单跨超静定梁,则杆端位
33、移可以看作如前所述,用位移法计算超静定结构时,把杆件当作单跨超静定梁,则杆端位移可以看作单跨梁的支座位移。这样,杆端内力与杆端位移之间的关系可以利用力法求出。把杆件杆端内单跨梁的支座位移。这样,杆端内力与杆端位移之间的关系可以利用力法求出。把杆件杆端内力与杆端位移以及荷载之间的关系式,称为转角位移方程。本节利用力法计算结果,由叠加原力与杆端位移以及荷载之间的关系式,称为转角位移方程。本节利用力法计算结果,由叠加原理推导出位移法中常用的等截面直杆的转角位移方程。理推导出位移法中常用的等截面直杆的转角位移方程。1.单跨超静定梁的形常数和载常数单跨超静定梁的形常数和载常数 常用的单跨超静定梁的类型有
34、:常用的单跨超静定梁的类型有:两端固定的梁,如图两端固定的梁,如图6.16(a)所示;所示;一端固定另一端铰支的梁,如图一端固定另一端铰支的梁,如图6.16(b)所示;所示;一端固定另一端为定一端固定另一端为定向支座的梁,如图向支座的梁,如图6.16(c)所示。所示。图图6.16 单跨超静定梁类型单跨超静定梁类型 第6章 超静定结构的内力计算6.22位位 移移 法法 上述三种超静定梁,无论是荷载作用还是支座位移所引起的内力,都可以用力法求得。为上述三种超静定梁,无论是荷载作用还是支座位移所引起的内力,都可以用力法求得。为了求解问题的方便,现将计算结果列于表了求解问题的方便,现将计算结果列于表6
35、-1中,表中所列的杆端弯矩和杆端剪力数值,凡是由中,表中所列的杆端弯矩和杆端剪力数值,凡是由荷载作用产生的称为载常数;由支座单位位移产生的均称为形常数。表荷载作用产生的称为载常数;由支座单位位移产生的均称为形常数。表6-1中的杆端弯矩、杆端中的杆端弯矩、杆端剪力及单位位移的正负号规定如下。剪力及单位位移的正负号规定如下。(1)MAB、MBA分别表示分别表示AB 杆杆A 端和端和B 端的弯矩,规定顺时针为正,逆时针为负。端的弯矩,规定顺时针为正,逆时针为负。(2)QAB、QBA分别表示分别表示AB 杆杆AB 端和端和BA 端的剪力,规定使杆件顺时针转动为正,反之为端的剪力,规定使杆件顺时针转动为
36、正,反之为负。负。(3)A表示固定端表示固定端 的转角,规定顺时针为正,逆时针为负。的转角,规定顺时针为正,逆时针为负。(4)表示表示AB杆两端垂直于杆轴的相对线位移,规定使杆件顺时针转动为正,反之为负。杆两端垂直于杆轴的相对线位移,规定使杆件顺时针转动为正,反之为负。在形常数中在形常数中 ,称为杆件的线刚度。在应用表,称为杆件的线刚度。在应用表6-1时应注意的是:表中的形常数和载常时应注意的是:表中的形常数和载常数是根据图示的支座位移和荷载方向求得的。当计算某一结构时,应根据其杆件两端实际的位数是根据图示的支座位移和荷载方向求得的。当计算某一结构时,应根据其杆件两端实际的位移方向和荷载方向,
37、判断形常数和载常数应取的正负号。移方向和荷载方向,判断形常数和载常数应取的正负号。第6章 超静定结构的内力计算6.23位位 移移 法法2.等截面直杆的转角位移方程等截面直杆的转角位移方程 1)两端固定杆两端固定杆 如图如图6.17所示两端固定的等截面直杆,假如所示两端固定的等截面直杆,假如A、B 两端的转角分别为两端的转角分别为A、B,垂直于杆轴,垂直于杆轴方向上的相对线位移是方向上的相对线位移是,梁上还存在外荷载的作用。梁,梁上还存在外荷载的作用。梁AB 在上述四种外在因素共同作用下的在上述四种外在因素共同作用下的杆端弯矩,应该等于杆端弯矩,应该等于A、B、和荷载单独作用下的杆端弯矩的叠加。
38、利用表和荷载单独作用下的杆端弯矩的叠加。利用表6-1可以得到:可以得到:式中,式中,为跨间荷引起为跨间荷引起AB杆的杆端弯矩。式杆的杆端弯矩。式(6-3)称为两端固定杆的转角位移方程。称为两端固定杆的转角位移方程。图图6.17 两端固定的直杆两端固定的直杆(6-3)第6章 超静定结构的内力计算6.24位位 移移 法法 2)一端固定另一端铰支杆一端固定另一端铰支杆 如图如图6.18所示,设所示,设A 端转角为端转角为A,两端相对位移是,两端相对位移是,梁上还作用有外荷载。利用表,梁上还作用有外荷载。利用表6-1可可以得到:以得到:式式(6-4)称为一端固定另一端铰支杆的转角位移方程。称为一端固定
39、另一端铰支杆的转角位移方程。图图6.18 一端固定、另一端铰支杆一端固定、另一端铰支杆(6-4)第6章 超静定结构的内力计算6.25位位 移移 法法图图6.18 一端固定、另一端铰支杆一端固定、另一端铰支杆 第6章 超静定结构的内力计算6.26位位 移移 法法续表续表 第6章 超静定结构的内力计算6.27位位 移移 法法 3)一端固定另一端定向支承杆一端固定另一端定向支承杆 如图如图6.19所示,设所示,设A 端转角为端转角为A,设,设B 端转角为端转角为B,梁上还作用有外加荷载。利用表,梁上还作用有外加荷载。利用表6-1可可以得到:以得到:式式(6-5)称为一端固定另一端定向支承杆的转角位移
40、方程。称为一端固定另一端定向支承杆的转角位移方程。(6-5)图图6.19 一端固定,另一端定向支承杆一端固定,另一端定向支承杆 第6章 超静定结构的内力计算6.28位位 移移 法法 以上得到了三种不同约束条件下等截面直杆的转角位移方程式,它们都是杆端弯矩与荷载以上得到了三种不同约束条件下等截面直杆的转角位移方程式,它们都是杆端弯矩与荷载及杆端位移之间的关系。对于杆端剪力与杆端位移及荷载之间关系可根据静力平衡条件求得:及杆端位移之间的关系。对于杆端剪力与杆端位移及荷载之间关系可根据静力平衡条件求得:式中,式中,分别表示相应简支梁在跨间荷载作用下的杆端剪力。分别表示相应简支梁在跨间荷载作用下的杆端
41、剪力。分别将式分别将式(6-3)、式、式(6-4)、式、式(6-5)代入式代入式(6-6),即可求得相应单跨超静定杆的杆端剪力与杆,即可求得相应单跨超静定杆的杆端剪力与杆端位移及荷载的关系。端位移及荷载的关系。(6-6)三、三、位移法计算举例位移法计算举例 位移法方程实质上反映了原结构某一部分的静力平衡条件。因此可以直接运用转角位移方位移法方程实质上反映了原结构某一部分的静力平衡条件。因此可以直接运用转角位移方程得到杆端力与杆端位移的关系式后,由原结构的结点和某部分的平衡条件建立位移法方程,程得到杆端力与杆端位移的关系式后,由原结构的结点和某部分的平衡条件建立位移法方程,下面说明这种方法的过程
42、和步骤。下面说明这种方法的过程和步骤。第6章 超静定结构的内力计算6.29位位 移移 法法 【例例6.4】用位移法计算如图用位移法计算如图6.20(a)所示刚架,绘制出最后弯矩图。所示刚架,绘制出最后弯矩图。图图6.19 一端固定,另一端定向支承杆一端固定,另一端定向支承杆解解 (1)如图如图6.20(a)所示的刚架结构具有两个基本未知量,即转角所示的刚架结构具有两个基本未知量,即转角1 和线位移和线位移,令,令Z1=1,Z2=,并假设位移均为正方向,如图,并假设位移均为正方向,如图6.20(b)所示。所示。(2)应用转角位移方程,将各杆杆端弯矩和杆端剪力表达为含结点位移及荷载的表达式,即:应
43、用转角位移方程,将各杆杆端弯矩和杆端剪力表达为含结点位移及荷载的表达式,即:第6章 超静定结构的内力计算6.30位位 移移 法法 (3)由结点由结点1的平衡条件的平衡条件M1=0和柱端剪力平衡条件和柱端剪力平衡条件x=0(如图如图6.21所示所示)可以建立两个方程式:可以建立两个方程式:图图6.21 杆杆12的平衡的平衡 第6章 超静定结构的内力计算6.31位位 移移 法法 将上述有关杆端弯矩和杆端剪力代入,得将上述有关杆端弯矩和杆端剪力代入,得 (4)解方程组可得:解方程组可得:(5)然后将然后将Z1=3.63、Z2=8.93代回到各杆杆端弯矩的表达式中,则可以得到:代回到各杆杆端弯矩的表达
44、式中,则可以得到:第6章 超静定结构的内力计算6.32位位 移移 法法 (6)根据上述各杆的杆端弯矩及跨间荷载,可绘制出原结构的最后弯矩图,如图根据上述各杆的杆端弯矩及跨间荷载,可绘制出原结构的最后弯矩图,如图6.22所示。所示。图图6.22 刚架的最后弯矩图刚架的最后弯矩图 第6章 超静定结构的内力计算6.33力矩分配法力矩分配法一、一、力矩分配法的基本概念力矩分配法的基本概念 前面介绍的力法和位移法是计算超静定结构的两种基本方法。无论哪种方法都需要求解联前面介绍的力法和位移法是计算超静定结构的两种基本方法。无论哪种方法都需要求解联立方程组。力矩分配法采用逐步修正的计算步骤,不需要求解联立方
45、程组,可以直接求出杆端立方程组。力矩分配法采用逐步修正的计算步骤,不需要求解联立方程组,可以直接求出杆端弯矩的近似值,比较适用于连续梁和无结点线位移的刚架的计算。弯矩的近似值,比较适用于连续梁和无结点线位移的刚架的计算。为了说明力矩分配法的概念和计算步骤,先介绍几个名词:为了说明力矩分配法的概念和计算步骤,先介绍几个名词:1)转动刚度转动刚度 杆端支承不同的杆件对于杆端转动的抵抗能力是不同的。杆端转动刚度系数杆端支承不同的杆件对于杆端转动的抵抗能力是不同的。杆端转动刚度系数SAB 的定义是:的定义是:杆杆AB 的的A端端(或者称近端或者称近端)产生单位转角时,产生单位转角时,A端所需施加的力矩
46、端所需施加的力矩值。此值不仅与杆件的弯曲线刚度值。此值不仅与杆件的弯曲线刚度 有关,而且与杆件的另一端有关,而且与杆件的另一端(或者称远端或者称远端)的支承有关。不同支承情况的等截面直杆相应的近端转的支承有关。不同支承情况的等截面直杆相应的近端转动刚度系数可以从表动刚度系数可以从表6-1中查得,如图中查得,如图6.23(a)图图6.23(c)所示,它们分所示,它们分别为:别为:远端为固定支座远端为固定支座 SAB=4i 远端为铰支座远端为铰支座 SAB=3i 远端为定向支座远端为定向支座 SAB=i图图6.23 转动刚度转动刚度 第6章 超静定结构的内力计算6.34力矩分配法力矩分配法 如果把
47、如果把A端改成固定铰支座或可动铰支座,则端改成固定铰支座或可动铰支座,则SAB 的数值不变。可以把的数值不变。可以把A 端看作可转动端看作可转动(但不但不能移动能移动)的刚结点的刚结点A,这时,这时SAB 就代表当刚结点产生单位转角时在杆端就代表当刚结点产生单位转角时在杆端Ai 引起的杆端弯矩。引起的杆端弯矩。2)传递系数传递系数 当杆件当杆件AB 仅在仅在A 端有转角时,引起端有转角时,引起B端的弯矩端的弯矩MBA 称为传递弯矩,它与称为传递弯矩,它与A 端弯矩端弯矩MAB之比之比值,称为该杆从值,称为该杆从A 端传至端传至B 端的弯矩传递系数,用端的弯矩传递系数,用CAB 表示。因此,图表
48、示。因此,图6.23(a)、(b)、(c)所示各所示各杆的传递系数分别为:杆的传递系数分别为:远端为固定支座远端为固定支座 远端为定向支座远端为定向支座 远端为铰支座远端为铰支座 利用传递系数的概念,图利用传递系数的概念,图6.23中各杆的远端弯矩可以由下式计算:中各杆的远端弯矩可以由下式计算:第6章 超静定结构的内力计算6.35力矩分配法力矩分配法 3)弯矩分配系数弯矩分配系数 如图如图6.24(a)所示的刚架,外力偶所示的刚架,外力偶M作用于结点作用于结点A,使结点,使结点A发生了转角发生了转角A,各杆发生如图中,各杆发生如图中虚线所示的变形。由刚结点的特点,各杆的虚线所示的变形。由刚结点
49、的特点,各杆的A端均发生转角端均发生转角 A。现将结点。现将结点A取作隔离体取作隔离体(如图如图6.24(b)所示所示),由平衡条件有:,由平衡条件有:图图6.24 刚架受力图刚架受力图 又由各杆转动刚度定义,当时,近端弯矩分别为:则:又由各杆转动刚度定义,当时,近端弯矩分别为:则:第6章 超静定结构的内力计算6.36力矩分配法力矩分配法 故故 式中,式中,SAi表示交于结点表示交于结点A的各杆的各杆A端转动刚度之和。则各杆端弯矩为:端转动刚度之和。则各杆端弯矩为:式式中中,AB,AC,AD即即为为点点A处处各各杆杆近近端端弯弯矩矩的的分分配配系系数数,且且同同一一结结点点各各杆杆端端分分配配
50、系系数数之之和和为为1,即,即AB+AC+AD=1。第6章 超静定结构的内力计算6.37力矩分配法力矩分配法 注意的是注意的是M 为作用于结点为作用于结点A 的外力矩,该力矩按各杆的外力矩,该力矩按各杆A 端转动刚度的比例分配给各杆的端转动刚度的比例分配给各杆的A 端端(近端近端),故称各杆的,故称各杆的A 端弯矩为分配弯矩、端弯矩为分配弯矩、为力矩分配系数、上述计算近端弯矩的过程称为为力矩分配系数、上述计算近端弯矩的过程称为力矩分配。力矩分配。力矩分配法即是将作用于结点的外力矩按交于此点的各杆端的力矩分配系数分配给各杆的力矩分配法即是将作用于结点的外力矩按交于此点的各杆端的力矩分配系数分配给