收藏 分销(赏)

在几何初步知识教学中渗透数学思想-论文.docx

上传人:快乐****生活 文档编号:4409078 上传时间:2024-09-19 格式:DOCX 页数:6 大小:14.39KB
下载 相关 举报
在几何初步知识教学中渗透数学思想-论文.docx_第1页
第1页 / 共6页
在几何初步知识教学中渗透数学思想-论文.docx_第2页
第2页 / 共6页
点击查看更多>>
资源描述
在几何初步知识教学中渗透数学思想 论文      镇江市润州区教科室,束宗德   数学的思想方法是数学的精髓,在初中数学新大纲中已把它列入基础知识的范畴,因此在小学数学教学中 适当渗透一些数学思想方法,对于开发学生智力,培养良好的思维品质以及加强中小学数学教学的衔接都将是 十分有益的。     一、渗透转化思想,构建知识网络   事物在一定条件下相互转化是最基本的唯物主义思想,可以及早让学生有所了解。例如梯形上底为3cm,下 底为7cm,高为4cm, 面积是多     1 1   少?S=─(3+7)×4=20(cm[2])。若上底为0呢?S=─×(0+7)     2 2     1   ×4=14(cm[2]), 这时梯形转化成三角形,S△=─×7×4=14(cm     2     1   [2]),结果一致。若上底也为7cm呢?S=─×(7+7)×4=28(cm[2]     2   ),这时梯形转化成平行四边形,   附图{图}   这样就构建了三角形、梯形、平行四边形的知识网络,让学生看到它们之间的内在联系,加深了知识的理 解和记忆。     二、渗透整体思想,优化解题过程   整体思想注重问题的整体结构,将题中的某些元素或组合看成一个整体,从而化繁为简,化难为易。例如 已知   附图{图}   像这样把问题放到整体结构中去考虑, 就可以开拓解题思路,优化解题过程。     三、渗透化归思想,促进知识迁移   将生疏的问题转化成熟悉的、已知的问题,这是运用化归思想解题的真谛。随着问题的解决,认知不断拓 展,促进了知识的正迁移。例如三角形的内角和是180°,任意四边形的内角和是多少度呢? 连接对角线将四 边形分割成两个三角形, 这样就得到四边形的内角和是360°,以此类推不难求出凸五边形、凸六边形……的 内角和,学生很容易接受。     四、渗透函数思想,展示变化观点   函数研究两个变量之间相互依存、相互制约的规律。我们可以通过具体问题、具体数值向学生展示运动变 化的观点。例如当长方形周长为20cm时,长和宽可以如何取值?面积各是多少?其中哪个面积最大?列出表来 让学生填写: 周长cm 长cm 宽cm 面积cm[2]     20 1 9 9     20 2 8 16     20 3 7 21     20 4 6 24     20 5 5 25     20 6 4 24     20 7 3 21     20 8 2 16     20 9 1 9   20 …… …… ……   这里仅取整数,也可取小数,这样的长方形很多很多,面积最大的只有一个是其中的正方形。这里毋需提 出函数的概念,仅仅是数学思想的渗透。     五、渗透数形结合思想,探究知识的奥秘   数是形的抽象概括,形是数的几何表现。通过数形结合往往可以使学生不但知其然,还能知其所以然。例 如正方形边长为5cm, 若边长增加3cm,面积是不是增加9cm[2]?不是。先看计算(5+3)[2]-5[2]=64-25 =39(cm[2]),再看图形:   附图{图}   面积增加的是阴影部分,而9cm[2]仅仅是其中阴影重叠的部分,这就非常清楚了。     六、渗透类比思想,指导应用知识   一些数学问题的解决思路常常是相通的,类比思想可以教会学生由此及彼,灵活应用所学知识。例如正方 体有12条棱,怎么算的呢?正方体由6个正方形封闭拼成,每个正方形4条边,共24条边,每两边重叠成一棱, 于是4×6÷2=12(条)。那么小足球上有多少条短缝呢? 先数清楚小足球由32块小皮缝成,其中黑的是五边 形有12块;白的是六边形有20块。总共有(5×12+6×20)条边,两条边缝成一条短缝,于是有(5×12+6× 20)÷2=90(条)短缝。 把实际问题归结为数学问题去解决,类比思想能发挥独特的作用。     七、渗透反证法,训练缜密思维   反证法是一种重要的证明方法,即使在中学也是一个难点。倘若有选择地让小学生接触一下浅易的题目, 将有助于开阔学生视野,训练良好的思维品质。例如三角形中三个内角大小不等,若其中一个角60°,它一定 是中等大小的。这是一个真命题,但无法直接证明,若用反证法便很容易。这个角只可能有三种情况:小角、 中角或大角。如是小角,另外两个角都大于60°,这样三个角之和大于180°,所以不可能; 如是大角,另外 两个角都小于60°,这样三个角之和小于180°, 也不可能。所以60°的角一定是中等大小的。让学生明白需 把可能出现的反面情况一一排除,以防产生单纯“非此即彼”的错误。
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 学术论文 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服