资源描述
七年级数学上册1.1生活中的图形期中试卷(A4可打印)
(考试时间:120分钟,总分100分)
班级:__________ 姓名:__________ 分数:__________
一、单选题(每小题2分,共计34分)
1、下图是由( )图形饶虚线旋转一周形成的
A . B . C . D .
2、李强同学用棱长为1的正方体在桌面上堆成如图所示的图形,然后把露出的表面都染成红色,则表面被他染成红色的面积为( )
A .37 B .33 C .24 D .21
3、如图,已知长方体ABCD﹣EFGH,在下列棱中,与棱GC异面的( )
A .棱EA B .棱GH C .棱AB D .棱GF
4、观察下图,把左边的图形绕着给定的直线旋转一周后,可能形成的立体图形是( )
A . B . C . D .
5、下列几何体中,属于柱体的有( )
A .1个 B .2个 C .3个 D .4个
6、一个密封的圆柱体容器中装了一半的水,如果将该容器水平放置如图,那么稳定后的水面形状为( )
A . B . C . D .
7、如图,含有曲面的几何体编号是( )
A .①②③ B .②③④ C .①④⑤ D .②③
8、将下左图中的三角形绕虚线旋转一周,所得的几何体是( ).
A . B . C . D .
9、图中的几何体是由哪个图形绕虚线旋转一周得到的( )
A . B . C . D .
10、将如图所示的Rt△ACB绕直角边AC旋转一周,所得几何体的主视图(正视图)是( )
A . B . C . D .
11、下面图形中,以直线为轴旋转一周,可以得到圆柱体的是( )
A . B . C . D .
12、如图是一个几何体的三视图,根据图中提供的数据,计算这个几何体的表面积是( )
A . B . C . D .
13、某学校设计了如图的一个雕塑,现在工人师傅打算用油漆喷刷所有的暴露面.经测量,已知每个小正方块的棱长均为1 m,则需喷刷油漆的总面积为( )m2
A .9 B .19 C .34 D .29
14、如图, 是直角三角形 的高,将直角三角形 按以下方式旋转一周可以得到右侧几何体的是( ).
A .绕着 旋转 B .绕着 旋转 C .绕着 旋转 D .绕着 旋转
15、下列立体图形中,只由一个面围成的是( )
A .正方体 B .圆锥 C .圆柱 D .球
16、下列图形中,绕铅垂线旋转一周可得到如图所示几何体的是( )
A . B . C . D .
17、下列说法正确的有( )
①n棱柱有2n个顶点,2n条棱,(n+2)个面(n为不小于3的正整数);②点动成线,线动成面,面动成体;③圆锥的侧面展开图是一个圆;④用平面去截一个正方体,截面的形状可以是三角形、四边形、五边形、六边形.
A .1个 B .2个 C .3个 D .4个
二、填空题(每小题2分,共计40分)
1、如图,正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的体积为 cm3.(结果保留π)
2、如图,长方形 ABCD 的长 AB=4,宽 BC=3,以 AB 所在的直线为轴,将长方形旋转一周后所得几何体的主视图的面积是 .
3、某种商品的外包装箱是长方体,其展开图的面积为430平方分米(如图),其中BC=5分米,EF=10分米,则AB的长度为 分米.
4、两个完全相同的长方体的长.宽.高分别为5cm.4cm.3cm,把它们叠放在一起组成个新长方体,在这个新长方体中,体积是 cm3 , 最大表面积是 cm2 .
5、由5个棱长为1的小正方形组成的几何体如图放置,一面着地,两面靠墙,如果要将露出来的部分涂色,则涂色部分的面积为 .
6、“夜晚的流星划过天空时留下一条明亮的光线,汽车的雨刷在挡风玻璃上画出一个扇面.”上面两句话用几何知识可以解释为 .
7、如图是由若干个棱长为1的小正方体组合而成的一个几何体的三视图,则这个几何体的表面积是 .
8、如图,由18个棱长为2cm的正方体拼成的立体图形,它的表面积是 cm2.
9、如图,一个正方体由 27 个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走 个小立方块.
10、如果一个六棱柱的一条侧棱长为5 cm,那么所有侧棱之和为 .
11、如图,是由17个棱长2的小正方体搭成的几何体,则它的表面积是 .
12、如图是一个长为 ,宽为 的长方形纸片,若将长方形纸片绕长边所在直线旋转一周,得到的几何体的体积为 .(结果保留 )
13、下列平面图形中,将编号为(只需填写编号)的平面图形绕轴旋转一周,可得到图中所示的立体图形 .
14、长方形绕着它的一条边旋转一周后形成的几何体是 .
15、如图,在正方体中,与线段AB平行的线段有 .
16、如图,在长方体ABCD﹣EFGH中,与对角线BH异面的棱有 .
17、10个棱长为a cm的正方体摆放成如图的形状,这个图形的表面积是 .
18、将下列几何体分类 用序号填空 :
(1) 按有无曲面分类:有曲面的是 ,没有曲面的是 ;
(2) 按柱体、锥体、球体分类:柱体的是 ,锥体的是 ,球体的是 .
19、如图,一个长方体长 ,宽 ,高 .从这个长方体的一个角上挖掉一个棱长 的正方体,剩下部分的体积是 ,剩下部分的表面积是 .
20、铅笔在纸上划过会留下痕迹,这种现象说明点动成线;一枚硬币在光滑的桌面上快速旋转,看上去像形成了一个球,这体现的数学知识是 .
三、计算题(每小题2分,共计6分)
1、一个长方形的两边分别是2cm、3cm,若将这个长方形绕一边所在直线旋转一周后是一个什么几何体?请求出这个几何体的底面积和侧面积.
2、我们知道,长方形绕着它的一边旋转形成圆柱体,圆柱体的侧面展开图为长方形,现将一个长、宽分别为4cm和3cm的长方形绕着它的宽旋转一周,求形成的圆柱体的表面积.
3、有一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱.现在有一个长为6cm,宽为5cm的长方形,分别绕它的长、宽所在直线旋转一周,得到不同的圆柱,它们的体积分别是多大?
四、解答题(每小题4分,共计20分)
1、如图,一个正五棱柱的底面边长为2cm,高为4cm.
(1)这个棱柱共有多少个面?计算它的侧面积;
(2)这个棱柱共有多少个顶点?有多少条棱?
(3)试用含有n的代数式表示n棱柱的顶点数、面数与棱的条数.
2、下面是由些棱长 的正方体小木块搭建成的几何体的主视图、俯视图和左视图,①请你观察它是由多少块小木块组成的;②在俯视图中标出相应位置立方体的个数;③求出该几何体的表面积(包含底面).
3、如图所示的立方体的六个面分别标着连续的整数,求这六个整数的和.
4、将下列几何体与它的名称连起来
5、已知Rt△ABC的斜边AB=13cm,一条直角边AC=5cm,以直线AB为轴旋转一周得一个几何体.求这个几何体的表面积.
展开阅读全文