1、七年级数学上册1.1生活中的图形期中试卷(A4可编辑)(考试时间:120分钟,总分100分)班级:_ 姓名:_ 分数:_一、单选题(每小题2分,共计34分)1、下面四个立体图形中,只由一个面就能围成的是( )A . B . C . D .2、一位雕塑家利用15个棱长为1米的相同正方体,在公园空地设计了一个如图所示的几何体造型,需要把露出的表面都涂上颜色,则需要涂颜色部分的面积为( )A .46米2 B .37米2 C .28米2 D .25米23、与易拉罐类似的几何体是( )A .圆锥 B .圆柱 C .棱锥 D .棱柱4、把立方体的六个面分别涂上六种不同的颜色,并画出朵数不等的花,各面上的颜
2、色与花朵的朵数情况列表如下:现将上述大小相同,颜色、花朵分布完全样的四个立方体拼成一个水平放置的长方体,如图所示,那么长方体的下底面共有花朵数是( )颜色红黄蓝白紫绿花朵数123456A .11 B .13 C .15 D .175、下列几何图形中为圆锥的是( ).A . B . C . D .6、将一个直角三角形绕它的直角边旋转一周得到的几何体是( )A . B . C . D .7、围成下列立体图形的各个面中,每个面都是平面的是( )A . B .C . D .8、矩形ABCD中,AB=3,BC=4,以AB为轴旋转一周得到圆柱,则它的表面积是( ).A .56 B .32 C .24 D
3、.609、如图,将一个直角三角形绕它的一条直角边所在的直线旋转一周,得到的几何体是( )A .长方体 B .球 C .圆柱 D .圆锥10、由4个棱长均为1的小正方形组成如图所示的几何体,这个几何体的表面积为( )A .18 B .15 C .12 D .611、有一个棱长为5的正方体木块,从它的每一个面看都有一个穿透的完全相同的孔(如图中的阴影部分),则这个立体图形的内、外表面的总面积是 ( )A .192 B .216 C .218 D .22512、如图,是直角三角形的高,将直角三角形按以下方式旋转一周可以得到右侧几何体的是( )A .绕着旋转 B .绕着旋转 C .绕着旋转 D .绕着
4、旋转13、从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图5所示的零件,则这个零件的表面积是( )A .20 B .22 C .24 D .2614、如图,将一个直角三角形绕它的一条直角边所在的直线旋转一周,得到的几何体是圆锥,这一现象能用以下哪个数学知识解释( )A .点动成线 B .线动成面 C .面动成体 D .面面相交得线15、下列立体图形含有曲面的是( )A . B . C . D .16、下面几何体中,是长方体的为( )A . B . C . D .17、“汽车上雨刷器的运动过程”能说明的数学知识是( )A .点动成线 B .线动成面 C .面动成体 D .面
5、与面交于线二、填空题(每小题2分,共计40分)1、某种商品的外包装箱是长方体,其展开图的面积为430平方分米(如图),其中BC=5分米,EF=10分米,则AB的长度为 分米.2、长为4,宽为2的矩形绕其一边旋转构成一个圆柱的最大体积为 (结果保留).3、如图所示的长方体,用符号表示下列棱的位置关系:A1B1 AB,AA1 BB1, A1D1 C1D1, AD BC4、如图所示是一种棱长分别是2cm,3cm,4cm的长方体积木,现要用若干块这样的积木来搭建大长方体,如果用6块积木来搭,那么搭成的大长方体的表面积最小是 5、圆锥由 面组成的,圆锥的侧面展开图是 ;6、在乒乓球、足球、羽毛球、六角螺
6、母中,形状类似球体的有 7、一个正方体的六个面分别标有数字1、2、3、4、5、6,在桌子上翻动这个正方体,根据图中给出的三种情况,可知数字2的对面是数字 8、如图,在长方体ABCDEFGH中,与对角线BH异面的棱有 9、如图,有一次数学活动课上,小颖用 10 个棱长为 1 的正方体积木搭成一个几何体,然后她请小华用其 他棱长为 1 的正方体积木在旁边再搭一个几何体,使用小华所搭几何体恰好和小颖所搭几何体拼成一个 无空隙的大正方体(不改变小颖所搭几何体的形状).那么:按照小颖的要求搭几何体,小华至少需要 个正方体积木.按照小颖的要求,小华所搭几何体的表面积最小为 .10、快速旋转一枚竖立的硬币(
7、假定旋转轴在原地不动),则可以得到一个立体图形球这个现象我们可以说成 (请你用点线面体间的关系解释)11、一个正方体有 个面12、下面的几何体中,属于柱体的有 个13、棱长是1cm的小立方体组成如图所示的几何体,那么这个几何体的表面积是 14、在朱自清的春中有描写春雨“像牛毛,像细丝,密密地斜织着”的语句,这里把雨看成了线,这说明 .(填“点动成线”,“线动成面”或“面动成体”)15、一个棱锥共有7个面,这是 棱锥,有 个侧面.16、十八世纪数学家欧拉证明了简单多面体中顶点数(),面数(),棱数()之间存在一个有趣的数量关系:,这就是著名的欧拉定理某个玻璃饰品的外形是简单的多面体,它的外表面是
8、由三角形和八边形拼接而成,且有24个顶点,每个顶点都有3条棱,设该多面体外表面三角形个数是个,八边形的个数是,则x+y= 17、将一个半圆绕它的直径所在的直线旋转一周得到的几何体是 .18、如图,直角三角形绕直线L旋转一周,得到的立体图形是 .19、一个几何体的三视图如图所示,根据图中数据,计算出该几何体的表面积是 20、一个容积是125dm3的正方体棱长是 dm.三、计算题(每小题2分,共计6分)1、一个长方形的两边分别是2cm、3cm,若将这个长方形绕一边所在直线旋转一周后是一个什么几何体?请求出这个几何体的底面积和侧面积2、我们知道,长方形绕着它的一边旋转形成圆柱体,圆柱体的侧面展开图为
9、长方形,现将一个长、宽分别为4cm和3cm的长方形绕着它的宽旋转一周,求形成的圆柱体的表面积3、已知有一个长为5cm,宽为3cm的长方形,若以这个长方形的一边所在的直线为轴,将它旋转一周,你能求出所得的几何体的表面积吗?四、解答题(每小题4分,共计20分)1、如图所示的立方体的六个面分别标着连续的整数,求这六个整数的和2、将一个半径为2cm的圆分成3个扇形,其圆心角的比1:2:3,求:各个扇形的圆心角的度数其中最大一个扇形的面积3、如图所示,请将下列几何体分类4、已知一个圆柱体水池的底面半径为2.4 m , 它的高为3.6 m ,求这个圆柱体水池的体积。(取3,结果精确到0 .1m3)5、探究:有一弦长6cm,宽4cm的矩形纸板,现要求以其一组对边为点所在直线为轴,旋转180,得到一个圆柱,现可按照两种方案进行操作:方案一:以较长的一组对边中点所在直线为轴旋转,如图;方案二:以较短的一组对边中点所在直线为轴旋转,如图(1)请通过计算说明哪种方法构造的圆柱体积大;(2)如果该矩形的长宽分别是5cm和3cm呢?请通过计算说明哪种方法构造的圆柱体积大;(3)通过以上探究,你发现对于同一个矩形(不包括正方形),以其一组对边中点所在直线为轴旋转得到一个圆柱,怎样操作所得到的圆柱体积大(不必说明原因)?