资源描述
七年级数学上册1.1生活中的图形平时训练试卷【A4可打印】
(考试时间:120分钟,总分100分)
班级:__________ 姓名:__________ 分数:__________
一、单选题(每小题2分,共计34分)
1、如图,是由一些棱长为1cm的小正方体构成的立体图形的三种视图,那么这个立体图形的表面积是( )
A .12 B .14 C .16 D .18
2、下列图形属于平面图形的是( )
A .立方体 B .球 C .圆柱 D .三角形
3、如图,将一个直角三角形绕它的一条直角边所在的直线旋转一周,得到的几何体是( )
A .长方体 B .球 C .圆柱 D .圆锥
4、将下面左图直角三角形ABC绕直角边AC旋转一周,所得几何体从正面看是( )
A . B . C . D .
5、下列说法正确的有( )
①n棱柱有2n个顶点,2n条棱,(n+2)个面(n为不小于3的正整数);②点动成线,线动成面,面动成体;③圆锥的侧面展开图是一个圆;④用平面去截一个正方体,截面的形状可以是三角形、四边形、五边形、六边形.
A .1个 B .2个 C .3个 D .4个
6、“节日的焰火”可以说是( )
A .面与面交于线 B .点动成线 C .面动成体 D .线动成面
7、如图,一个几何体的三视图分别是两个矩形,一个扇形,则这个几何体表面积的大小为( )
A .12π B .15π C .12π+6 D .15π+12
8、下列几何体中,不完全是由平面围成的是( )
A . B . C . D .
9、长方形纸板绕它的一条边旋转1周形成的几何体为( )
A .圆柱 B .棱柱 C .圆锥 D .球
10、如图,含有曲面的几何体编号是( )
A .①②③ B .②③④ C .①④⑤ D .②③
11、下列立体图形中,只由一个面围成的是( )
A .正方体 B .圆锥 C .圆柱 D .球
12、下列图形中,不属于立体图形的是( )
A . B . C . D .
13、十个棱长为 的正方体摆放成如图的形状,这个图形的表面积是( )
A . B . C . D .
14、将一个直角三角形绕它的直角边旋转一周得到的几何体是( )
A . B . C . D .
15、生活中的实物可以抽象出各种各样的几何图形,如图所示蛋糕的形状类似于( )
A .圆柱体 B .球体 C .圆 D .圆锥体
16、如图所示,沿图中虚线旋转一周,能围成的几何体是下面几何体中的 ( )
A . B . C . D .
17、“汽车上雨刷器的运动过程”能说明的数学知识是( )
A .点动成线 B .线动成面 C .面动成体 D .面与面交于线
二、填空题(每小题2分,共计40分)
1、在Rt△ABC中,∠C=90°,AC=3,BC=4,把它沿斜边AB所在直线旋转一周,所得几何体的侧面积是 .(结果保留π)
2、若三棱柱的高为6 cm,底面边长都为5 cm,则三棱柱的侧面展开图的周长为 cm,面积为 cm2 .
3、如图是一个几何体的三视图,根据图中所示数据计算这个几何体的表面积是 .
4、已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为 .
5、如图,在长方体 ABCD -EFGH中,与棱CD异面的棱有 条.
6、一个直角三角形绕它的一条直角边旋转一周得到的几何体是 .
7、一个容积是125dm3的正方体棱长是 dm.
8、如图所示是一种棱长分别是2cm,3cm,4cm的长方体积木,现要用若干块这样的积木来搭建大长方体,如果用6块积木来搭,那么搭成的大长方体的表面积最小是 .
9、如图是一个圆柱体的三视图,由图中数据计算此圆柱体的表面积为 .(结果保留π)
10、在长方体、圆柱、圆锥、球中,三视图均一样的几何体是 。
11、如图中的几何体有 个面,面面相交成 线.
12、下列几何体中,含有曲面的有 个.
13、笔尖在纸上运动时就形成了线,这可以说明点动成线;汽车的雨刷在挡风玻璃上画出一个扇面,这可以说明 .
14、十八世纪数学家欧拉证明了简单多面体中顶点数( ),面数( ),棱数( )之间存在一个有趣的数量关系: ,这就是著名的欧拉定理.某个玻璃饰品的外形是简单的多面体,它的外表面是由三角形和八边形拼接而成,且有24个顶点,每个顶点都有3条棱,设该多面体外表面三角形个数是 个,八边形的个数是 ,则x+y= .
15、快速旋转一枚竖立的硬币(假定旋转轴在原地不动),则可以得到一个立体图形球.这个现象我们可以说成 (请你用点线面体间的关系解释)
16、若正方体棱长的和是36,则它的体积是 .
17、如图是以长为120cm,宽为80cm的长方形硬纸,在它的四个角处各剪去一个边长为20cm的正方形后,将其折叠成如图所示的无盖的长方体,则这个长方体的体积为 .
18、一个小立方体的六个面分别标有数字1、2. 3、4、5、6,从三个不同的方向看到的情形如图所示,则数字6的对面是 .
19、为了致敬抗疫一线最美逆行者,小明用棱长为1的小立方块粘接成了一个如图所示的几何体.从它的每一个面看都有一个穿透的完全相同的“十字孔”(阴影部分),则这个几何体(含内部)的表面积是 。
20、如图是一个长为 ,宽为 的长方形纸片,若将长方形纸片绕长边所在直线旋转一周,得到的几何体的体积为 .(结果保留 )
三、计算题(每小题2分,共计6分)
1、一个长方形的两边分别是2cm、3cm,若将这个长方形绕一边所在直线旋转一周后是一个什么几何体?请求出这个几何体的底面积和侧面积.
2、有一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱.现在有一个长为6cm,宽为5cm的长方形,分别绕它的长、宽所在直线旋转一周,得到不同的圆柱,它们的体积分别是多大?
3、已知有一个长为5cm,宽为3cm的长方形,若以这个长方形的一边所在的直线为轴,将它旋转一周,你能求出所得的几何体的表面积吗?
四、解答题(每小题4分,共计20分)
1、如图所示的积木是16块棱长为2cm的正方体堆积而成的,求出它的表面积.
2、如图所示,有一个长为4cm、宽为3cm的长方形.
(1)若分别绕它们的相邻两边所在的直线旋转一周,会得到不同的几何体,请你画出这两个几何体.
(2)在你画出的这两个几何体中,哪个体积大?
3、如图,某玩具是由两个正方体用胶水黏合而成的,它们的棱长分别为1dm和2dm,为了美观,现要在其表面喷涂油漆,已知喷涂1dm2需用油漆59克,求喷涂这个玩具共需多少克油漆?
4、请写出下列几种情形所形成的图形:
(1)手电筒的光线;(2)雷达扫描在屏幕上形成的图形;(3)光线所经过的路径;(4)一个直角三角形绕一条直角边旋转一周所形成的图形.
5、观察如图所示的直四棱柱.
(1)它有几个面?几个底面?底面与侧面分别是什么图形?
(2)侧面的个数与底面多边形的边数有什么关系?
(3)若底面的周长为20cm,侧棱长为8cm,则它的侧面积为多少?
展开阅读全文