资源描述
七年级下册数学第一单元教案
第一章 整式的运算
同底数幂的乘法
教学目标
1.经历探索同底数幂的乘法运算性质的过程,进一步体会幂的意义.
2.了解同底数幂乘法的运算性质,并能解决一些实际问题.
教学重点
同底数幂的乘法运算法则及其应用.
教学难点
同底数幂的乘法运算法则的灵活运用.
教学方法
引导启发法
教师引导学生在回忆幂的意义的基础上,通过特例的推理,再到一般结论的推出,启发学生应用旧知识解决新问题,得出新结论,并能灵活运用.
教学过程
光在真空中的速度大约是3×105千米/秒,太阳系以外距离地球最近的恒星是比邻星,它发出的光到达地球大约需要4.22年,一年以3×107秒计算,比邻星与地球队距离约为多少千米?
做一做
1、计算下列各式:
(1)102×103
(2)105×108
(3)10m×10n(m、n都是正整数)
讨论:你发现了什么?
2、2m×2n等于什么?()m×()n呢?(m、n都是正整数)
议一议:
am·an等于什么(m、n都是正整数)?为什么?
n个a
m个a
am·an=(a·a·……·a)(a·a·……·a)
(m+n)个a
=a·a·……·a
=am+n
am·an=am+n(m、n都是正整数)
同底数幂相乘,底数不变,指数相加。
例1计算:
(1)(-3)7×(-3)6 (2)()3×()
(3)-x3·x5 (4)b2m·b2n+1
解:略
想一想:
am·an·ap等于什么?
例2光的速度约为3×105千米/秒,太阳照射到地球上大约需要5×102秒,地球距离太阳大约有多远?
解:3×105×5×102
=15×107
=1.5×108(千米)
地球距离太阳约有1.5×108千米。
随堂练习
P15 1
作业
P15 知识技能1、(1)~(4) 2、
幂的乘方与积的乘方(一)
教学目标
1.经历探索幂的乘方的运算性质的过程,进一步体会幂的意义.
2.了解幂的乘方的运算性质,并能解决一些实际问题.
教学重点
幂的乘方的运算性质及其应用.
教学难点
幂的运算性质的灵活运用.
教学方法
引导——探究相结合
教师由实际情景引导学生探究幂的乘方的运算性质,并能灵活运用.
教学过程
如果甲球的半径是乙球队n倍,那么甲球的体积是乙球的n3倍
地球、木星、太阳可以近似地看做球体,木星、太阳的半径分别约是地球的10倍和102倍,它们的体积分别约为地球的多少倍?
做一做
计算下列各式,并说明理由。
(1)(62)4 (2) (a2)3 (3) (am)2 (4) (am)n
n个am
(am)n=(am·am·……·am)
n个m
=am+m+……+m
即
(am)n=amn(m、n都是正整数)
幂的乘方,底数不变,指数相加
例1计算
(1)(102)3 (2)(b5)5 (3)(an)3
(4)-(x2)m (5)(y2)3·y (6)2(a2)6-(a3)4
解:略
随堂练习
P18 1
作业
P18 知识技能1、(1)~(4) 2、
幂的乘方与积的乘方(二)
教学目标
1.经历探索积的乘方的运算性质的过程,进一步体会幂的意义.
2.了解积的乘方的运算性质,并能解决一些实际问题.
教学重点
积的乘方运算性质及其应用.
教学难点
幂的运算性质的灵活应用.
教学方法
探索——交流法
教师引导学生通过特例探索积的乘方的运算,在学生各自说明理由的过程中充分交流做法,从而掌握积的乘方的运算性质.
教学过程
分组讨论:
(1)23×53等于多少?与同伴交流你的做法。
(2)28×58,212×512分别等于多少?
(3)从上面的计算中,你发现了什么规律?再换一个例子试一试。
做一做
(1)(3×5)7=3( )×5( )
(2)(3×5)m=3( )×5( )
(3)(ab)n=a( )·b( )
(ab)n=(ab)·(ab)·……·(ab)
n个ab
n个a
n个b
=(a·a·……·a)(b·b·……·b)
=anbn
即
(ab)n=anbn(n是正整数)
积的乘方等于
例2计算:
(1)(3x2) (2)(-2b)5
(3)(-2xy)4 (4)(3a2)n
解:略
例3地球可以近似地看做是球体,如果用V,r分别代表球队体积和半径,那么V=πr3
=π×(6×103)
=9.05×1011(千米3)
地球的体积大约是9.05×1011千米3
随堂练习
P21 1
作业
P21 知识技能 1、
同底数幂的除法
教学目标
1.经历探索同底数幂除法的运算性质的过程,进一步体会幂的意义.
2.了解同底数幂除法的运算性质,并能解决一些实际问题.
3.理解零指数幂和负整数指数幂的意义.
教学重点
同底数幂除法的运算性质及其应用.
教学难点
零指数幂和负整数指数幂的意义.
教学方法
探索——引导相结合
在教师的引导下,组织学生探索同底数幂除法的运算性质及零指数幂和负整数指数幂的意义.
一种液体含有1012个有害细菌,为了试验某种杀菌剂的效果,科学家们进行了试验,发现1滴杀菌剂可以杀死109个此种细菌,要将1升液体中的有害细菌全部杀死,需要这种杀菌剂多少滴?你是怎样计算的?
做一做
计算下列各式,并说明理由(m>n)
(1)108÷105 (2)10m÷10n (3)(-3)m÷(-3)n
am÷an= (a≠0,m、n都是正整数,且m>n)同底数幂相乘,底数不变,指数相减。
例1计算:
(1)a7÷a4 (2)(-x)6÷(-x)3
(3)(xy)4÷(xy) (4)b2m+2÷b2
解:略
想一想、猜一猜
P20
我们规定ao=1(a≠0);a-p=(a≠0,p是正整数)
例2用小数或分数表示下列各数将:
(1)10-3; (2)70×8-2; (3)1.6×10-4
解:略
作业
P21 知识技能 1、(5)~(8) 2、
整式的乘法(一)
教学目标
1.经历探索单项式与单项式相乘的运算法则的过程,会进行单项式与单项式相乘的运算.
2.理解单项式与单项式相乘的算理,体会乘法交换律和结合律的作用和转化的思想.
教学重点
单项式与单项式相乘的运算法则及其应用.
教学难点
灵活地进行单项式与单项式相乘的运算.
教学方法
引导——发现法
教学过程
引导学生阅读课本P22提出问题。
想一想
(1)对于上面的问题小明得到如下的结果:
第一幅画的画面面积是x·(mx)米2
第二幅画的画面面积是(mx)·(x)米2
提出问题:他的结果对吗?可以表达得更简单吗?说说你的理由。
(2)类似地,3a2b·2ab3和(xyz)·y2z可以表达得更简单些吗?为什么?
(3)如何进行单项式与单项式相乘的运算?
单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式
例1计算
(1)(2xy2)·(xy) (2)(-2a2b3)·(-3a)
(3)(4×105)·(5×104)
解:略
随堂练习
P27 1、2
作业P28 知识技能1、
整式的乘法(二)
教学目标
1.经历探索单项式与多项式乘法的运算法则的过程,会进行简单的单项式与多项式的乘法运算.
2.理解单项式与多项式相乘的算理,体会乘法分配律及转化思想的作用.
教学重点
单项式与多项式相乘的乘法法则及应用.
教学难点
灵活运用单项式与多项式相乘的乘法法则.
教学过程
引导学生讨论P34页议一议:
(1)宁宁也作了一幅画,所用纸的大小与京京相同,她在纸的左右各留了x米的空白,这幅画的画面面积是多少?
(2)如何进行单项式与多项式相乘的运算?
单项式与多项式相乘,就是根据分配率用单项式去乘以多项式的每一项,再把所得的积相加。
例2计算:
(1)2ab(5ab2+3a2b) (2)(a2b-2ab)·ab
解:(1)2ab(5ab2+3a2b)
=2ab·(5ab2)+2ab·(3a2b)
=10a2b3+6a3b2
(2)(a2b-2ab)·ab
=(a2b)·ab-2ab·ab
= a2b3-a2b2
作业
P30 1、2
小结
这节课我们学习了单项式与多项式的乘法,大家一定有不少体会.你能告诉大家吗?
这节课我最大的收获是进一步体验到了转化的思想:单项式与多项式相乘,根据乘方分配律可以转化成单项式与单项式相乘;而上节课我们学习的单项式与单项式相乘,根据乘法交换律和结合律又可转化成同底数幂乘法的运算,……
教学目标
1.经历探索多项式与多项式相乘的运算法则的过程,会进行简单的多项式与多项式相乘运算(其中多项式相乘仅限于一次式相乘).
2.理解多项式与多项式相乘运算的算理,体会乘法分配律的作用和转化的思想.
教学重点
多项式与多项式相乘的法则及应用.
教学难点
灵活地进行整式乘法的运算.
教学方法
活动探究法.
教学过程
利用如下的长方形卡片拼接成更大的长方形(每种卡片有若干张)
n
n
a
a
b
b
m
m
下面分别是小明、小颖拼出的图形:
n
m
a
b
n
m
a
(1)用不同的形式表示小明所拼长方形的面积,并进行比较。
(2)用不同的形式表示小颖所拼长方形的面积,并进行比较。
(m+b)(n+a)=m(n+a)+b(n+a)
=mn+ma+bn+ba
实际上,多项式与单项式相乘,可以先把其中的一个多项式看成一个整体,再运用单项式与多项式相乘的方法进行运算。
多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,在把所得到积相加。
例3计算
(1)(1-x)(0.6-x) (2)(2x+y)(x-y)
解:略
随堂练习 P33
作业 p33 知识技能1、
平方差公式(一)
教学目标
1.经历探索平方差公式的过程.
2.会推导平方差公式,并能运用公式进行简单的运算.
教学重点
平方差公式的推导和应用.
教学难点
用平方差公式的结构特征判断题目能否使用公式.
教学过程
计算下列各题:
(1)(x+2)(x-2)
(2)(1+3a)(1-3a)
(3)(x+5y)(x-5y)
(4)(y+3z)(y-3z)
观察以上算式及其运算结果,你发现什么规律?再列举两例验证你的发现。
平方差公式
(a+b)(a-b)=a2-b2
两数和与这两数差的积,等于它们的平方差。
例1利用平方差公式计算:
(1)(5+6x)(5-6x)
(2)(x-2)(x+2)
(3)(-m+n)(-m-n)
解:略
例2利用平方差公式计算:
(1)(-x-y)(-x+y)
(2)(ab+8)(ab-8)
(3)(m+n)(m-n)+3n2
解:略
随堂练习
P36 1 作业P36 知识技能1 (1)~(4)
课时小结
应用这个公式要明白公式的特征:
(1)左边为两个数的和与差的积;
(2)右边为两个数的平方差.
平方差公式(二)
教学目标
1.了解平方差公式的几何背景.
2.会用面积法推导平方差公式,并能运用公式进行简单的运算.
3.体会符号运算对证明猜想的作用.
教学重点
平方差公式的几何解释和广泛的应用.
教学难点
准确地运用平方差公式进行简单运算,培养基本的运算技能.
教学方法
启发——探究相结合
教学过程
如图,边长为a的大正方形中有一个边长为b的小正方形。
(1)请表示图1中阴影部分的面积。
a
b
a
b
(2)小颖将阴影部分拼成了一个长方形如图2,这个长方形的长和宽分别是多少?你能表示出它的面积吗?
(3)比较(1)(2)的结果,你能验证平方差公式吗?
想一想
P31
例3用平方差公式进行计算:
(1)103×97 (2)118×122
解:略
例4计算
(1)a2(a+b)(a-b)+a2b2
(2)(2x-5)(2x+5)-2x(2x-3)
解:略
随堂练习P38 1
作业P39 知识技能1、
完全平方公式(一)
教学目标
1.完全平方公式的推导及其应用.
2.完全平方公式的几何背景.
教学重点
1.完全平方公式的推导过程、结构特点、语言表述、几何解释.
2.完全平方公式的应用.
教学难点
1.完全平方公式的推导及其几何解释.
2.完全平方公式结构特点及其应用.
教学过程
一块边长为a米的正方形试验田,因需要将其边长增加b米,形成四块试验田,以种植不同的新品种如图。
b
b
a
a
用不同的形式表示试验
田的总面积,并进行比较,
你发现了什么?
想一想
(1)(a+b)2等于什么?你能用多项式乘法法则说明理由吗?
(2)(a-b)2等于什么?小颖写出了如下的算式:
(a-b)2=[a+(-b)]2
她是怎么想的?你能继续做下去吗?
完全平方公式
(a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2
请用自己的语言叙述上面的公式。
例1利用完全平方公式计算:
(1)(2x-3)2 (2)(4x+5y)2 (3)(mn-a)2
解:略
随堂练习
P34 1
读一读 P34
作业 P36 1、2、3
完全平方公式(二)
教学目标
1.通过有趣的分糖情景,使学生进一步巩固(a+b)2=a2+2ab+b2,同时帮助学生进一步理解(a+b)2与a2+b2的关系.
2.运用完全平方公式进行一些有关数的简便运算.
3.进一步熟悉乘法公式的运用,体会公式中字母的广泛含义,它可以是数,也可以是整式.
教学重点
1.巩固完全平方公式,区分(a+b)2与a2+b2的关系.
2.熟悉乘法公式的运用,体会公式中字母a、b的广泛含义.
教学难点
1.区分(a+b)2与a2+b2的关系.
2.熟练乘法公式的运用,体会公式中字母a、b的广泛含义.
教学方法
活动探究法.
教学过程
1、计算(a+b+c)2
讨论:如何计算上题,
提问归纳总结:将三项和的平方向二项和的平方转化,即(a+b+c)2=[(a+b)+c]2
=(a+b)2+2c(a+b)+c2
=a2+2ab+b2+2ac+2bc+c2
=a2+b2+c2+2ab+2ac+2bc
一位老人非常喜欢孩子,每当有孩子到他家做客时老人都要拿出糖果招待他们,来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块糖,……
(1)第一天有a个男孩去老人家,老人一共给了这些孩子多少糖?
(2)第二天有b个女孩去老人家,老人一共给了这些孩子多少糖?
(3)第三天这(a+b)个孩子一起去看老人,老人一共给了这些孩子多少块糖?
(4)这些孩子第三天得到的糖果数与前两天他们得到的糖果总数哪个多?多多少?为什么?
例2利用完全平方公式计算:
(1)1022 (2)1972
解:略
例3计算
(1)(x+3)2-x2 (2)(a+b+3)(a+b-3)
(3)(x+5)2-(x-2) (x-3)
解:略
随堂练习 P45 1
作业 P45 知识技能 1、2
整式的除法(一)
教学目标
1、经历探索整式除法运算法则的过程,会进行简单的整式除法运算(只要求单项式除以单项式,多项式除以单项式,并且结果都是整式)。
2、理解整式除法运算的算理,发展有条理的思考及表达能力。
教学重点
如何计算单项式除以单项式
教学过程
计算下列各题,并说说你的理由
(1)(x2y)÷x2
(2)(8m2n2)÷(2m2n)
(3)(a4b2c)÷(3a2b)
分组讨论:如何进行单项式除以单项式的运算?
单项式相除,把系数、同底数幂分别相除后,作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
例1计算:
(1)(-x2y2)÷(3x2y)
(2)(10a4b3c2)÷(5a3bc)
(3)(2x2y)2·(-7xy2)÷(14x4y3)
(4)(2a+b)4÷(2a+b)2
解:略
例2月球距离地球大约3.84×105千米,一架飞机的速度约为8×102千米/时,如果乘坐此飞机飞行这么远的距离大约需要多少时间?
解:略
随堂练习
P47 1
作业
P47 知识技能1、
整式的除法(二)
教学目标
1.多项式除以单项式的运算法则及其应用.
2.多项式除以单项式的运算算理.
教学重点
多项式除以单项式的运算法则的探索及其应用.
教学难点
探索多项式除以单项式的运算法则的过程.
教学方法
自主探索法
类比整数的除法:除以一个不等于0的数等于乘以这个数的倒数,凭借已经有的数学经验自主探索多项式除以单项式的运算法则,并能用语言有条理的思考及表达.
教学过程
计算下列各题,说说你的理由
(1)(ad+bd)÷d=
(2)(a2b+3ab)÷a=
(3)(xy3-2xy)÷(xy)=
分组讨论
如何进行多项式除以单项式的运算?
多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
例3计算
(1)(6ab+8b)÷(2b)
(2)(27a3-15a2+6a)÷(3a)
(3)(9x2y-6xy2)÷(3xy)
(4)(3x2y-xy2+xy)÷(-xy)
解:略
随堂练习
P50 1
作业
P50 知识技能 1、(1)~(4)
16
展开阅读全文