收藏 分销(赏)

2023版高考数学一轮复习第九章立体几何9.2空间图形的基本关系与公理练习理北师大版.doc

上传人:二*** 文档编号:4388519 上传时间:2024-09-18 格式:DOC 页数:6 大小:751.61KB
下载 相关 举报
2023版高考数学一轮复习第九章立体几何9.2空间图形的基本关系与公理练习理北师大版.doc_第1页
第1页 / 共6页
亲,该文档总共6页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、9.2 空间图形的根本关系与公理核心考点精准研析考点一平面的根本性质1. 以下说法正确的选项是()A.三点可以确定一个平面B.一条直线和一个点可以确定一个平面C.四边形是平面图形D.两条相交直线可以确定一个平面2.,是平面,a,b,c是直线,=a,=b,=c,假设ab=P,那么()A.PcB.PcC.ca=D.c=3.在三棱锥A-BCD的边AB,BC,CD,DA上分别取E,F,G,H四点,如果EFHG=P,那么点P()A.一定在直线BD上B.一定在直线AC上C.在直线AC或BD上D.不在直线AC上,也不在直线BD上4.如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,这四个点共面的图形是

2、()A.B.C.D.【解析】1.选D.A错误,不共线的三点可以确定一个平面.B错误,一条直线和直线外一个点可以确定一个平面.C错误,四边形不一定是平面图形.D正确,两条相交直线可以确定一个平面.2.选A.如图,因为ab=P,所以Pa,Pb,因为=a,=b,所以P,P,而=c,所以Pc.3.选B.如下图,因为EF 平面ABC,HG 平面ACD,EFHG=P,所以P平面ABC,P平面ACD.又因为平面ABC平面ACD=AC,所以PAC.4.选D.在图中分别连接PS,QR,易证PSQR,所以P,Q,R,S四点共面;在图中分别连接PQ,RS,易证PQRS,所以P,Q,R,S共面.在图中过点P,Q,R,

3、S可作一正六边形,故四点共面;在图中PS与QR为异面直线,所以四点不共面.共面、共线、共点问题的证明(1)证明共面的方法:先确定一个平面,然后再证其余的线(或点)在这个平面内;证两平面重合.(2)证明共线的方法:先由两点确定一条直线,再证其他各点都在这条直线上;直接证明这些点都在同一条特定直线上.(3)证明线共点问题的常用方法是:先证其中两条直线交于一点,再证其他直线经过该点.【秒杀绝招】排除法解T4,在图中PS与QR为异面直线,所以四点不共面,可排除A,B,C,直接选D.考点二异面直线所成的角【典例】1.(2023全国卷II)在正方体ABCD-A1B1C1D1中,E为棱CC1的中点,那么异面

4、直线AE与CD所成角的正切值为()A.B.C.D.2.直三棱柱ABC-A1B1C1中,ABC=120,AB=2,BC=CC1=1,那么异面直线AB1与BC1所成角的余弦值为 ()A.B.C.D.【解题导思】序号联想解题1画出图形,由ABCD,联想到AE与CD所成角为EAB,解直角三角形.2画出图形,图中没有与AB1,BC1平行的直线,联想到作辅助线.【解析】1.选C.因为CDAB,所以EAB即为异面直线AE与CD所成角,连接BE,在直角三角形ABE中,设AB=a,那么BE=a,所以tanEAB=.2.选C.如图,取AB,BB1,B1C1的中点M,N,P,连接MN,NP,PM,可知AB1与BC1

5、所成的角等于MN与NP所成的角.由题意可知BC1=,AB1=,那么MN=AB1=,NP=BC1=.取BC的中点Q,连接PQ,QM,那么可知PQM为直角三角形.在ABC中,AC2=AB2+BC2-2ABBCcosABC=4+1-221=7,即AC=.又CC1=1,所以PQ=1,MQ=AC=.在MQP中,可知MP=.在PMN中,cosPNM=-,又异面直线所成角的范围为,故所求角的余弦值为.【一题多解】选C.把三棱柱ABC-A1B1C1补成四棱柱ABCD-A1B1C1D1,如图,连接C1D,BD,那么AB1与BC1所成的角为BC1D(或其补角).由题意可知BC1=,BD=,C1D=AB1=.可知B

6、+BD2=C1D2,所以cosBC1D=.求异面直线所成的角的三个步骤(1)一作:根据定义作平行线,作出异面直线所成的角.(2)二证:证明作出的角是异面直线所成的角.(3)三求:解三角形,求出所作的角.1.直三棱柱ABC-A1B1C1中,假设BAC=90,AB=AC=AA1,那么异面直线BA1与AC1所成的角等于()A.30B.45C.60D.90【解析】选C.如图,可补成一个正方体,所以AC1BD1.所以BA1与AC1所成的角为A1BD1.又易知A1BD1为正三角形,所以A1BD1=60.即BA1与AC1成60的角.2.如图,圆柱的轴截面ABB1A1是正方形,C是圆柱下底面弧AB的中点,C1

7、是圆柱上底面弧A1B1的中点,那么异面直线AC1与BC所成角的正切值为.【解析】取圆柱下底面弧AB的另一中点D,连接C1D,AD,因为C是圆柱下底面弧AB的中点,所以ADBC,所以直线AC1与AD所成的角即为异面直线AC1与BC所成的角,因为C1是圆柱上底面弧A1B1的中点,所以C1D垂直于圆柱下底面,所以C1DAD.因为圆柱的轴截面ABB1A1是正方形,所以C1D=AD,所以直线AC1与AD所成角的正切值为,所以异面直线AC1与BC所成角的正切值为.答案:考点三空间两条直线的位置关系命题精解读1.考什么:(1)考查异面直线的判断,直线平行、垂直的判断等问题.(2)考查直观想象的核心素养.2.

8、怎么考:以柱、锥、台、球及组合体为载体,考查直线位置关系的判断.3.新趋势:以异面直线、平行直线为载体考查点的不共面与共面问题.学霸好方法1.直线位置关系的判断方法:异面直线可采用直接法或反证法;平行直线可利用三角形(梯形)中位线的性质、公理4及线面平行与面面平行的性质定理;垂直关系往往利用线面垂直或面面垂直的性质来解决.2.交汇问题:与线面、面面平行与垂直相结合命题.两条异面直线的判定【典例】在图中,G,N,M,H分别是正三棱柱(两底面为正三角形的直棱柱)的顶点或所在棱的中点,那么表示直线GH、MN是异面直线的图形有.(填上所有正确答案的序号)【解析】图中,直线GHMN;图中,G,H,N三点

9、共面,但M面GHN,因此直线GH与MN异面;图中,连接MG,GMHN,因此GH与MN共面;图中,G,M,N三点共面,但H面GMN,因此GH与MN异面,所以图中GH与MN异面.答案:两直线平行或相交的判定【典例】空间四边形ABCD中,E,H分别是边AB,AD的中点,F,G分别是边BC,CD的中点.求证:EG与FH相交.【证明】如图,连接AC,BD,那么EFAC,HGAC,因此EFHG;同理EHFG,那么EFGH为平行四边形.又EG,FH是EFGH的对角线,所以EG与HF相交.1.假设两条直线是异面直线,那么称为一对异面直线,那么从正方体的12条棱中任取两条,共有对异面直线()A.48B.36C.

10、24D.12【解析】选C.每一条棱所在的直线与其余的棱所在的直线成异面直线的有4对,所以共有412=48对,但是这48对中每一种都重复了一对,所以所求的异面直线共有24对.2.如下图,正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:直线AM与CC1是相交直线;直线AM与BN是平行直线;直线BN与MB1是异面直线;直线AM与DD1是异面直线.其中正确的结论为.(注:把你认为正确的结论序号都填上)【解析】因为点A在平面CDD1C1外,点M在平面CDD1C1内,直线CC1在平面CDD1C1内,CC1不过点M,所以AM与CC1是异面直线,故错;取DD1中点E,

11、连接AE,那么BNAE,但AE与AM相交,故错;因为点B1与BN都在平面BCC1B1内,点M在平面BCC1B1外,BN不过点B1,所以BN与MB1是异面直线,故正确;同理正确,故填.答案:1.假设直线l1和l2是异面直线,l1在平面内,l2在平面内,l是平面与平面的交线,那么以下说法正确的选项是()A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交【解析】选D.由直线l1和l2是异面直线可知l1与l2不平行,故l1,l2中至少有一条与l相交.2.如图,三棱柱ABC-A1B1C1中,底面三角形A1B1C1是正三角形,E是BC的中点,那么以下表达正确的选项是()A.CC1与B1E是异面直线B.C1C与AE共面C.AE与B1C1是异面直线D.AE与B1C1所成的角为60【解析】选C.由于CC1与B1E都在平面C1B1BC内,故C1C与B1E是共面的,所以A错误;由于C1C在平面C1B1BC内,而AE与平面C1B1BC相交于E点,点E不在C1C上,故C1C与AE是异面直线,B错误;同理AE与B1C1是异面直线,C正确;而AE与B1C1所成的角就是AE与BC所成的角,E为BC中点,ABC为正三角形,所以AEBC,D错误.- 6 -

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 考试专区 > 高考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服