资源描述
七上实数经典例题及习题
耐思教育 第六章 实数
知识点总结及题型
考点一、实数的概念及分类 (3分)
1、实数的分类
正有理数
有理数 零 有限小数和无限循环小数
实数 负有理数
正无理数
无理数 无限不循环小数
负无理数
整数包括正整数、零、负整数。
正整数又叫自然数。
正整数、零、负整数、正分数、负分数统称为有理数。
2、无理数
在理解无理数时,要抓住“无限不循环”这一实质,归纳起来有四类:
(1)开方开不尽的数,如等;
(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;
(3)有特定结构的数,如0.1010010001…等;
(4)某些三角函数,如sin60o等
考点二、实数的倒数、相反数和绝对值 (3分)
1、相反数
实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。
2、绝对值
一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数
如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。
考点三、平方根、算数平方根和立方根 (3—10分)
1、平方根
如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数a的平方根记做“”。
2、算术平方根
正数a的正的平方根叫做a的算术平方根,记作“”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
(0)
;注意的双重非负性:
-(<0) 0
3、立方根
如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意:,这说明三次根号内的负号可以移到根号外面。
考点四、科学记数法和近似数 (3—6分)
1、有效数字
一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。
2、科学记数法
把一个数写做的形式,其中,n是整数,这种记数法叫做科学记数法。
考点五、实数大小的比较 (3分)
1、数轴
规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
2、实数大小比较的几种常用方法
(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。
(2)求差比较:设a、b是实数,
(3)求商比较法:设a、b是两正实数,
(4)绝对值比较法:设a、b是两负实数,则。
(5)平方法:设a、b是两负实数,则。
考点六、实数的运算 (做题的基础,分值相当大)
1、加法交换律
2、加法结合律
3、乘法交换律
4、乘法结合律
5、乘法对加法的分配律
6、实数混合运算时,对于运算顺序有什么规定?
实数混合运算时,将运算分为三级,加减为一级运算,乘除为二能为运算,乘方为三级运算。同级运算时,从左到右依次进行;不是同级的混合运算,先算乘方,再算乘除,而后才算加减;运算中如有括号时,先做括号内的运算,按小括号、中括号、大括号的顺序进行。
7、有理数除法运算法则就什么?
两有理数除法运算法则可用两种方式来表述:第一,除以一个不等于零的数,等于乘以这个数的倒数;第二,两数相除,同号得正,异号得负,并把绝对值相除。零除以任何一个不为零的数,商都是零。
8、什么叫有理数的乘方?幂?底数?指数?
相同因数相乘积的运算叫乘方,乘方的结果叫幂,相同因数的个数叫指数,这个因数叫底数。记作: an
9、有理数乘方运算的法则是什么?
负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数。零的任何正整数幂都是零。
10、加括号和去括号时各项的符号的变化规律是什么?
去(加)括号时如果括号外的因数是正数,去(加)括号后式子各项的符号与原括号内的式子相应各项的符号相同;括号外的因数是负数去(加)括号后式子各项的符号与原括号内式子相应各项的符号相反。
经典例题
类型一.有关概念的识别
1.下面几个数:0.23 ,1.010010001…,,3π,,,其中,无理数的个数有( )
A、1 B、2 C、3 D、4
解析:本题主要考察对无理数概念的理解和应用,其中,1.010010001…,3π,是无理数
故选C
举一反三:
【变式1】下列说法中正确的是( )
A、的平方根是±3 B、1的立方根是±1 C、=±1 D、是5的平方根的相反数
【答案】本题主要考察平方根、算术平方根、立方根的概念,
∵=9,9的平方根是±3,∴A正确.
∵1的立方根是1,=1,是5的平方根,∴B、C、D都不正确.
【变式2】如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是( )
A、1 B、1.4 C、 D、
【答案】本题考察了数轴上的点与全体实数的一一对应的关系.∵正方形的边长为1,对角线为,由圆的定义知|AO|=,∴A表示数为,故选C.
【变式3】
【答案】∵π= 3.1415…,∴9<3π<10
因此3π-9>0,3π-10<0
∴
类型二.计算类型题
2.设,则下列结论正确的是( )
A. B.
C. D.
解析:(估算)因为,所以选B
举一反三:
【变式1】1)1.25的算术平方根是__________;平方根是__________.2) -27立方根是__________. 3)___________, ___________,___________.
【答案】1);.2)-3. 3), ,
【变式2】求下列各式中的
(1) (2) (3)
【答案】(1)(2)x=4或x=-2(3)x=-4
类型三.数形结合
3. 点A在数轴上表示的数为,点B在数轴上表示的数为,则A,B两点的距离为______
解析:在数轴上找到A、B两点,
举一反三:
【变式1】如图,数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C表示的数是( ).
A.-1 B.1- C.2- D.-2
【答案】选C
[变式2] 已知实数、、在数轴上的位置如图所示:
化简
【答案】:
类型四.实数绝对值的应用
4.化简下列各式:
(1) |-1.4| (2) |π-3.142|
(3) |-| (4) |x-|x-3|| (x≤3)
(5) |x2+6x+10|
分析:要正确去掉绝对值符号,就要弄清绝对值符号内的数是正数、负数还是零,然后根据绝对值的定义正确去掉绝对值。
解:(1) ∵=1.414…<1.4
∴|-1.4|=1.4-
(2) ∵π=3.14159…<3.142
∴|π-3.142|=3.142-π
(3) ∵<, ∴|-|=-
(4) ∵x≤3, ∴x-3≤0,
∴|x-|x-3||=|x-(3-x)|
=|2x-3| =
说明:这里对|2x-3|的结果采取了分类讨论的方法,我们对这个绝对值的基本概念要有清楚的认识,并能灵活运用。
(5) |x2+6x+10|=|x2+6x+9+1|=|(x+3)2+1|
∵(x+3)2≥0, ∴(x+3)2+1>0
∴|x2+6x+10|= x2+6x+10
举一反三:
【变式1】化简:
【答案】=+-=
类型五.实数非负性的应用
5.已知:=0,求实数a, b的值。
分析:已知等式左边分母不能为0,只能有>0,则要求a+7>0,分子+|a2-49|=0,由非负数的和的性质知:3a-b=0且a2-49=0,由此得不等式组 从而求出a, b的值。
解:由题意得
由(2)得 a2=49 ∴a=±7
由(3)得 a>-7,∴a=-7不合题意舍去。
∴只取a=7
把a=7代入(1)得b=3a=21
∴a=7, b=21为所求。
举一反三:
【变式1】已知(x-6)2++|y+2z|=0,求(x-y)3-z3的值。
解:∵(x-6)2++|y+2z|=0
且(x-6)2≥0, ≥0, |y+2z|≥0,
几个非负数的和等于零,则必有每个加数都为0。
∴ 解这个方程组得
∴(x-y)3-z3=(6-2)3-(-1)3=64+1=65
【变式2】已知那么a+b-c的值为___________
【答案】初中阶段的三个非负数: ,
a=2,b=-5,c=-1; a+b-c=-2
类型六.实数应用题
6.有一个边长为11cm的正方形和一个长为13cm,宽为8cm的矩形,要作一个面积为这两个图形的面积之和的正方形,问边长应为多少cm。
解:设新正方形边长为xcm,
根据题意得 x2=112+13×8
∴x2=225
∴x=±15
∵边长为正,∴x=-15不合题意舍去,
∴只取x=15(cm)
答:新的正方形边长应取15cm。
举一反三:
【变式1】拼一拼,画一画: 请你用4个长为a,宽为b的矩形拼成一个大正方形,并且正中间留下的空白区域恰好是一个小正方形。(4个长方形拼图时不重叠)
(1)计算中间的小正方形的面积,聪明的你能发现什么?
(2)当拼成的这个大正方形边长比中间小正方形边长多3cm时,大正方形的面积就比小正方形的面积
多24cm2,求中间小正方形的边长.
解析:(1)如图,中间小正方形的边长是:
,所以面积为=
大正方形的面积=,
一个长方形的面积=。
所以,
答:中间的小正方形的面积,
发现的规律是:(或)
(2) 大正方形的边长:,小正方形的边长:
,即 ,
又 大正方形的面积比小正方形的面积多24 cm2
所以有,
化简得:
将代入,得:
cm
答:中间小正方形的边长2.5 cm。
类型七.易错题
7.判断下列说法是否正确
(1)的算术平方根是-3; (2)的平方根是±15.
(3)当x=0或2时, (4)是分数
解析:(1)错在对算术平方根的理解有误,算术平方根是非负数.故
(2)表示225的算术平方根,即=15.实际上,本题是求15的平方根,
故的平方根是.
(3)注意到,当x=0时, =,显然此式无意义,
发生错误的原因是忽视了“负数没有平方根”,故x≠0,所以当x=2时,x=0.
(4)错在对实数的概念理解不清. 形如分数,但不是分数,它是无理数.
类型八.引申提高
8.(1)已知的整数部分为a,小数部分为b,求a2-b2的值.
(2)把下列无限循环小数化成分数:①②③
(1)分析:确定算术平方根的整数部分与小数部分,首先判断这个算术平方根在哪两个整数之间,那么较小的整数即为算术平方根的整数部分,算术平方根减去整数部分的差即为小数部分.
解:由 得
的整数部分a=5, 的小数部分,
∴
(2)解:(1) 设x= ①
则 ②
②-①得
9x=6
∴ .
(2) 设 ①
则 ②
②-①,得
99x=23
∴ .
(3) 设 ①
则 ②
②-①,得
999x=107,
∴ .
学习成果测评:
A组(基础)
一、细心选一选
1.下列各式中正确的是( )
A. B. C. D.
2. 的平方根是( )
A.4 B. C. 2 D.
3. 下列说法中 ①无限小数都是无理数 ②无理数都是无限小数 ③-2是4的平方根 ④带根号的数都是
无理数。其中正确的说法有( )
A.3个 B. 2个 C. 1个 D. 0个
4.和数轴上的点一一对应的是( )
A.整数 B.有理数 C. 无理数 D. 实数
5.对于来说( )
A.有平方根 B.只有算术平方根 C. 没有平方根 D. 不能确定
6.在(两个“1”之间依次多1个“0”)中,无理数
的个数有( )
A.3个 B. 4个 C. 5个 D. 6个
7.面积为11的正方形边长为x,则x的范围是( )
A. B. C. D.
8.下列各组数中,互为相反数的是( )
A.-2与 B.∣-∣与 C. 与 D. 与
9.-8的立方根与4的平方根之和是( )
A.0 B. 4 C. 0或-4 D. 0或4
10.已知一个自然数的算术平方根是a ,则该自然数的下一个自然数的算术平方根是( )
A. B. C. D.
二、耐心填一填
11.的相反数是________,绝对值等于的数是________,∣∣=_______。
12.的算术平方根是_______,=______。
13.____的平方根等于它本身,____的立方根等于它本身,____的算术平方根等于它本身。
14.已知∣x∣的算术平方根是8,那么x的立方根是_____。
15.填入两个和为6的无理数,使等式成立: ___+___=6。
16.大于,小于的整数有______个。
17.若∣2a-5∣与互为相反数,则a=______,b=_____。
18.若∣a∣=6,=3,且ab0,则a-b=______。
19.数轴上点A,点B分别表示实数则A、B两点间的距离为______。
20.一个正数x的两个平方根分别是a+2和a-4,则a=_____,x=_____。
三、认真解一解
21.计算
⑴ ⑵ ⑶
⑷ ∣∣+∣∣ ⑸ ×+×
⑹ 4×[ 9 + 2×()] (结果保留3个有效数字)
22.在数轴上表示下列各数和它们的相反数,并把这些数和它们 的相反数按从小到大的顺序排列,用“”号连接:
参考答案:
一: 1、B 2、D 3、B 4、D 5、C 6、A 7、B 8、C 9、C 10、D
二:11、,π-3 12、3,
13、0;0,;0,1 14、 15、答案不唯一 如: 16、5
17、 18、-15 19、2 20、1,9
三:
21、⑴ ⑵-17 ⑶-9 ⑷2 ⑸-36 ⑹37.9
22、
B组(提高)
一、选择题:
1.的算术平方根是 ( )
A.0.14 B.0.014 C. D.
2.的平方根是 ( )
A.-6 B.36 C.±6 D.±
3.下列计算或判断:①±3都是27的立方根;②;③的立方根是2;④,
其中正确的个数有 ( )
A.1个 B.2个 C.3个 D.4个
4.在下列各式中,正确的是 ( )
A.; B.; C.; D.
5.下列说法正确的是 ( )
A.有理数只是有限小数 B.无理数是无限小数 C.无限小数是无理数 D.是分数
6.下列说法错误的是 ( )
A. B. C.2的平方根是 D.
7.若,且,则的值为 ( )
A. B. C. D.
8.下列结论中正确的是 ( )
A.数轴上任一点都表示唯一的有理数; B.数轴上任一点都表示唯一的无理数;
C. 两个无理数之和一定是无理数; D. 数轴上任意两点之间还有无数个点
9.-27 的立方根与的平方根之和是 ( )
A.0 B.6 C.0或-6 D.-12或6
10.下列计算结果正确的是 ( )
A. B. C. D.
二.填空题:
11.下列各数:①3.141、②0.33333……、③、④π、⑤、⑥、
⑦0.3030003000003……(相邻两个3之间0的个数逐次增加2)、⑧0中,其中是有理数的有
__________;无理数的有__________.(填序号)
12.的平方根是__________;0.216的立方根是__________.
13.算术平方根等于它本身的数是__________;立方根等于它本身的数是__________.
14. 的相反数是__________;绝对值等于的数是__________.
15.一个正方体的体积变为原来的27倍,则它的棱长变为原来的__________倍.
三、解答题:
16.计算或化简:
(1) (2) (3)
(4) (5) (6)
17.已知 ,且x是正数,求代数式的值。
24
18.观察右图,每个小正方形的边长均为1,
⑴图中阴影部分的面积是多少?边长是多少?
⑵估计边长的值在哪两个整数之间。
⑶把边长在数轴上表示出来。
参考答案:
一、选择题:
1、A 2、C 3、B 4、B 5、B 6、D 7、B 8、D 9、C 10、B
二.填空题:
11、①②⑤⑥⑧;③④⑦. 12、;0.6. 13、;. 14、; . 15、3.
三、解答题:
16、计算或化简:(1) (2) (3) (4) (5) (6)
17、解: 25x2=144
又∵x是正数
∴x=
∴
18、解:①图中阴影部分的面积17,边长是
②边长的值在4与5之间
③
展开阅读全文