资源描述
浙江省湖州市2015年中考数学试卷
一、选择题(本题有10个小题,每小题3分,共30分)
1.−5的绝对值是( )
A. −5 B. 5 C. − D.
【答案】B.
考点:绝对值的意义.
2.当x=1时,代数式4−3x的值是( )
A. 1 B. 2 C. 3 D. 4
【答案】A.
【解析】
试题分析:把x=1代入代数式4−3x即可得原式=4-3=1.故答案选A.
考点:代数式求值.
3.4的算术平方根是( )
A. ±2 B. 2 C. −2 D.
【答案】B.
【解析】
试题分析:因,根据算术平方根的定义即可得4的算术平方根是2.故答案选B.
考点:算术平方根的定义.
4.若一个圆锥的侧面展开图是半径为18cm,圆心角为240°的扇形,则这个圆锥的底面半径长是( )
A. 6cm B. 9cm C. 12cm D. 18cm
【答案】C.
考点:弧长公式;圆锥底面圆的周长等于侧面展开扇形的弧长.
5.已知一组数据的方差是3,则这组数据的标准差是( )
A. 9 B. 3 C. D.
【答案】D.
【解析】
试题分析:根据标准差的平方就是方差可得这组数据的标准差是.故答案选D.
考点:标准差的定义.
6.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于( )
A. 10 B. 7 C. 5 D. 4
【答案】C.
考点:角平分线的性质;三角形的面积公式.
7.一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( )
A. B. C. D.
【答案】D.
【解析】
试题分析:列表如下
黑
白1
白2
黑
(黑,黑)
(白1,黑)
(白2,黑)
白1
(黑,白1)
(白1,白1)
(白2,白1)
白2
(黑,白2)
(白1,白2)
(白2,白2)
由表格可知,随机摸出一个球后放回搅匀,再随机摸出一个球所以的结果有9种,两次摸出的球都是黑球的结果有1种,所以两次摸出的球都是黑球的概率是.故答案选D.
考点:用列表法求概率.
8.如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=,则AB的长是( )
A. 4 B. 2 C. 8 D. 4
【答案】C.
考点:切线的性质定理;锐角三角函数;垂径定理.
9.如图,AC是矩形ABCD的对角线,⊙O是△ABC的内切圆,现将矩形ABCD按如图所示的方式折叠,使点D与点O重合,折痕为FG,点F,G分别在AD,BC上,连结OG,DG,若OG⊥DG,且☉O的半径长为1,则下列结论不成立的是( )
A. CD+DF=4 B. CD−DF=2−3 C. BC+AB=2+4 D. BC−AB=2
【答案】A.
【解析】
试题分析:如图,设⊙O与BC的切点为M,连接MO并延长MO交AD于点N,利用“AAS”易证△OMG≌△GCD,所以OM=GC=1, CD=GM=BC-BM-GC=BC-2.又因AB=CD,所以可得BC−AB=2.设AB=a,BC=b,AC=c, ⊙O的半径为r,⊙O是Rt△ABC的内切圆可得r=(a+b-c),所以c=a+b-2. 在Rt△ABC中,由勾股定理可得,整理得2ab-4a-4b+4=0,又因BC−AB=2即b=2+a,代入可得2a(2+a)-4a-4(2+a)+4=0,解得,所以,即可得BC+AB=2+4. 再设DF=x,在Rt△ONF中,FN=,OF=x,ON=,由勾股定理可得,解得,所以CD−DF=,CD+DF=.综上只有选项A错误,故答案选A.
考点:矩形的性质;直角三角形内切圆的半径与三边的关系;折叠的性质;勾股定理;
10.如图,已知在平面直角坐标系xOy中,O是坐标原点,点A是函数y= (x<0)图象上一点,AO的延长线交函数y= (x>0,k是不等于0的常数)的图象于点C,点A关于y轴的对称点为A′,点C关于x轴的对称点为C′,连接CC′,交x轴于点B,连结AB,AA′,A′C′,若△ABC的面积等于6,则由线段AC,CC′,C′A′,A′A所围成的图形的面积等于( )
A. 8 B. 10 C. 3 D. 4
【答案】B.
【解析】
试题分析:如图,连接O A′,由点A和点A′关于y轴的对称可得∠AOM=∠A′OM,又因∠AOM+∠BOC=90°, ∠A′OM +∠A′OB=90°,根据等角的余角相等可得∠BOC= A′OB;又因点C与点C′关于x轴的对称,所以点A、A′、C′三点在同一直线上.设点A的坐标为(m,),直线AC经过点A,可求的直线AC的表达式为.直线AC与函数y=一个交点为点C,则可求得点C的坐标当k<0时为(mk,),当k>0时为(-mk,),根据△ABC的面积等于6可得,解得.或,解得,所以y=.根据反比例函数比例系数k的几何意义和轴对称的性质可得△AO A′的面积为1,△CO C′的面积为9,所以线段AC,CC′,C′A′,A′A所围成的图形的面积等于△AO A′的面积+△CO C′的面积,即线段AC,CC′,C′A′,A′A所围成的图形的面积等于10,故答案选B.
考点:反比例函数与一次函数的综合题;反比例函数与一次函数的交点坐标;反比例函数比例系数k的几何意义和轴对称的性质.
二、填空题(本题有6小题,每小题4分,共24分)
11.计算:23×()2=_______________________________
【答案】2.
考点:有理数的运算.
12.放学后,小明骑车回家,他经过的路程s(千米)与所用时间t(分钟)的函数关系如图所示,则小明的骑车速度是_________________________千米/分钟.
【答案】0.2千米/分钟.
【解析】
试题分析:由图象可得,小明10分钟走了2千米路程,根据速度等于路程除以时间即可计算出小明的骑车速度.
考点:函数图象.
12.在“争创美丽校园,争做文明学生”示范校评比活动中,10位评委给某校的评分情况如下表所示:
评分(分)
80
85
90
95
评委人数
1
2
5
2
则这10位评委评分的平均数是_________________________分
【答案】89.
考点:平均数的计算方法.
14.如图,已知C,D是以AB为直径的半圆周上的两点,O是圆心,半径OA=2,∠COD=120°,则图中阴影部分的面积等于_____________________.
【答案】.
【解析】
试题分析:由题意可知,∠AOC+∠BOD=180°—120°=60°,图中阴影部分的面积等于.
考点:扇形的面积公式.
15.如图,已知抛物线C1:y=a1x2+b1x+c1和C2:y=a2x2+b2x+c2都经过原点,顶点分别为A,B,与x轴的另一个交点分别为M、N,如果点A与点B,点M与点N都关于原点O成中心对称,则抛物线C1和C2为姐妹抛物线,请你写出一对姐妹抛物线C1和C2,使四边形ANBM恰好是矩形,你所写的一对抛物线解析式是_______________________和_________________________
【答案】,(答案不唯一,只要符合条件即可).
【解析】
试题分析:因点A与点B,点M与点N都关于原点O成中心对称,所以把抛物线C2看成抛物线C1以点O为旋转中心旋转180°得到的,由此即可知a1,a2互为相反数,抛物线C1和C2的对称轴直线关于y轴对称,由此可得出b1=b2. 抛物线C1和C2都经过原点,可得c1=c2,设点A(m,n),由题意可知B(-m,-n),由勾股定理可得.由图象可知MN=︱4m︱,又因四边形ANBM是矩形,所以AB=MN,即,解得,设抛物线的表达式为,任意确定m的一个值,根据确定n的值,抛物线过原点代入即可求得表达式,然后在确定另一个表达式即可.l例如,当m=1时,n=,抛物线的表达式为,把x=0,y=0代入解得a=,即,所以另一条抛物线的表达式为.
考点:旋转、矩形、二次函数综合题.
16.已知正方形ABC1D1的边长为1,延长C1D1到A1,以A1C1为边向右作正方形A1C1C2D2,延长C2D2到A2,以A2C2为边向右作正方形A2C2C3D3(如图所示),以此类推…,若A1C1=2,且点A,D2, D3,…,D10都在同一直线上,则正方形A9C9C10D10的边长是__________________________
【答案】.
考点:正方形的性质;相似三角形的判定及性质;规律探究题.
三、简答题(本题有8小题,共66分)
17.(6分)计算:
【答案】a+b.
考点:分式的运算.
18. (6分)解不等式组
【答案】.
【解析】
试题分析:分别求出这两个不等式的解集,这两个不等式的解集的公共部分即为不等式组的解集.
试题解析:
解不等式(1)得,x<6,
解不等式(2)得,x>1
∴不等式组的解集是.
考点:一元一次不等式组的解法.
19. (6分)已知y是x的一次函数,当x=3时,y=1;当x=−2时,y=−4,求这个一次函数的解析式.
【答案】y=x—2.
考点:用待定系数法求函数解析式.
20.(8分)如图,已知BC是⊙O的直径,AC切⊙O于点C,AB交⊙O于点D,E为AC的中点,连结DE.
(1)若AD=DB,OC=5,求切线AC的长.
(2)求证:ED是⊙O的切线.
【答案】(1)AC=10;(2)详见解析.
试题解析:
(1)连接CD,
∵BC是⊙O的直径,
∴∠BDC=90°,即CD⊥AB,
∵AD=DB
∴AC=BC=2OC=10.
(2)连接OD,
∵∠ADC=90°,E为AC的中点,
∴DE=EC=AC, ∴∠1=∠2,
∵OD=OC, ∠3=∠4,
∵AC切⊙O于点C,∴AC⊥OC.
∴∠1+∠3=∠2+∠4,即DE⊥OD,
∴DE是⊙O的切线.
考点:圆周角定理的推论;切线的性质定理;切线的判定定理.
21.(8分)为了深化课程改革,某校积极开展校本课程建设,计划成立“文学鉴赏”、“科学实验”、“音乐舞蹈”和“手工编织”等多个社团,要求每位学生都自主选择其中一个社团,为此,随机调查了本校各年级部分学生选择社团的意向,并将调查结果绘制成如下统计图表(不完整):
某校被调查学生选择社团意向统计表
选择意向
文学鉴赏
科学实验
音乐舞蹈
手工编织
其他
所占百分比
a
35%
b
10%
c
根据统计图表中的信息,解答下列问题:
(1)求本次调查的学生总人数及a,b,c的值.
(2)将条形统计图补充完整(温馨提示:请画在答题卷相对应的图上).
(3)若该校共有1200名学生,试估计全校选择“科学实验”社团的学生人数.
【答案】(1)200人,a=30%,b=20%,c=5%;(2)图见解析;(3)420人.
(2)补全统计图如图所示;
(3)全校选择“科学实验”社团的学生人数约为1200×35%=420(人).
考点:条形统计图;用样本估计总体.
22.(10分)某工厂计划在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.
(1)求原计划每天生产的零件个数和规定的天数.
(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.
【答案】(1) 原计划每天生产零件2400个,规定的天数是10天;(2)原计划安排的工人人数为480人.
【解析】
试题分析:(1)设原计划每天生产零件x个,根据相等关系“原计划生产24000个零件所用时间=实际生产(24000+300)个零件所用的时间”可列方程,解出x即为原计划每天生产的零件个数,再代入即可求得规定天数;(2)设原计划安排的工人人数为y人,根据“(5组机器人生产流水线每天生产的零件个数+原计划每天生产的零件个数)×(规定天数-2)=零件总数24000个”可列方程[5×20×(1+20%)×+2400] ×(10-2)=24000,解得y的值即为原计划安排的工人人数.
试题解析:(1)解:设原计划每天生产零件x个,由题意得,
,
解得x=2400,
经检验,x=2400是原方程的根,且符合题意.
∴规定的天数为24000÷2400=10(天).
答:原计划每天生产零件2400个,规定的天数是10天.
考点:分式方程的应用.
23 (10分)问题背景:已知在△ABC中,AB边上的动点D由A向B运动(与A,B不重合),点E与点D同时出发,由点C沿BC的延长线方向运动(E不与C重合),连结DE交AC于点F,点H是线段AF上一点
(1)初步尝试:如图1,若△ABC是等边三角形,DH⊥AC,且点D,E的运动速度相等,求证:HF=AH+CF
小王同学发现可以由以下两种思路解决此问题:
思路一:过点D作DG∥BC,交AC于点G,先证GH=AH,再证GF=CF,从而证得结论成立.
思路二:过点E作EM⊥AC,交AC的延长线于点M,先证CM=AH,再证HF=MF,从而证得结论成立.
请你任选一种思路,完整地书写本小题的证明过程(如用两种方法作答,则以第一种方法评分)
(2)类比探究:如图2,若在△ABC中,∠ABC=90°,∠ADH=∠BAC=30°,且点D,E的运动速度之比是:1,求的值.
(3)延伸拓展:如图3,若在△ABC中,AB=AC,∠ADH=∠BAC=36°,记=m,且点D、E的运动速度相等,试用含m的代数式表示 (直接写出结果,不必写解答过程).
【答案】(1)详见解析;(2)=2 ;(3) .
【解析】
试题分析:(1)(选择思路一):过点D作DG∥BC,交AC于点G,如图1,易证△ADG是等边三角形,根据等边三角形的性质可得GD=AD=CE,GH=AH,再由平行线的性质可得∠GDF=∠CEF, ∠DGF=∠ECF,又因GD=AD=CE,根据“ASA”可证△GDF≌△CEF,由全等三角形的对应边相等可得GF=CF,所以GH+GF=AH+CF,即HF=AH+CF. (选择思路二):过点E作EM⊥AC,交AC的延长线于点M,如图1,先证△ADH≌△CEM,由全等三角形的对应边相等可得AH=CM,DH=EM, 又因∠DHF=∠EMF=90°, ∠DFH=∠EFM,所以△DFH≌△EFM,即可得HF=MF=CM+CF=AH+CF.(2))过点D作DG∥BC,交AC于点G,如图2, 可证AD=GD, 由题意可知,AD=CE,所以GD=CE,再证△GDF≌△CEF,由全等三角形的对应边相等可得GF=CF,所以 GH+GF=AH+CF,即HF=AH+CF,即可得=2.(3)过点D作DG∥BC,交AC于点G,如图3,可得AD=AG,DH=DG,AD=EC,所以,又因DG∥BC,可得,所以
由比例的性质可得,即,所以.
试题解析:(1)证明:方法一(选择思路一),
过点D作DG∥BC,交AC于点G,如图1,
∵△ABC是等边三角形,
∴∠ADG=∠B=60°, ∠A=60°,
∴△ADG是等边三角形,
∴GD=AD=CE,
∵DH⊥AC,GH=AH,
∵DG∥BC, ∴∠GDF=∠CEF, ∠DGF=∠ECF,
∴△GDF≌△CEF, ∴GF=CF,
∴GH+GF=AH+CF,即HF=AH+CF.
(2)过点D作DG∥BC,交AC于点G,如图2,
则∠ADG=∠B=90°,
∵∠BAC=∠ADH=30°,
∴∠HGD=∠HDG=60°,
∴AH=GH=GD,AD=GD,
由题意可知,AD=CE,
∴GD=CE,
∵DG∥BC, ∴∠GDF=∠CEF,∠DGF=∠ECF,
∴△GDF≌△CEF, ∴GF=CF,
∴GH+GF=AH+CF,即HF=AH+CF,
∴=2.
(3) .
考点:等边三角形的判定及性质;全等三角形的判定及性质;平行线的性质;比例的性质.
24.面直角坐标系xOy中,O为坐标原点,线段AB的两个端点A(0,2),B(1,0)分别在y轴和x轴的正半轴上,点C为线段AB的中点,现将线段BA绕点B按顺时针方向旋转90°得到线段BD,抛物线y=ax2+bx+c(a≠0)经过点D.
(1)如图1,若该抛物线经过原点O,且a=.
①求点D的坐标及该抛物线的解析式.
②连结CD,问:在抛物线上是否存在点P,使得∠POB与∠BCD互余?若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由.
(2)如图2,若该抛物线y=ax2+bx+c(a≠0)经过点E(1,1),点Q在抛物线上,且满足∠QOB与∠BCD互余,若符合条件的Q点的个数是4个,请直接写出a的取值范围.
【答案】(1) ①D(3,1),;②在抛物线上存在点,使得∠POB与∠BCD互余.(2)a的取值范围是.
【解析】
试题分析:(1) ①过点D作DF⊥x轴于点F,可证△AOB≌△BFD,即可求得D点的坐标,把a=,点D的坐标代入抛物线即可求抛物线的解析式. ②由C、D两点的纵坐标都为1可知CD∥x轴,所以∠BCD=∠ABO,又因∠BAO与∠BCD互余,若要使得∠POB与∠BCD互余,则需满足∠POB=∠BAO, 设点P的坐标为(x,).分两种情况:第一种情况,当点P在x轴上方时,过点P作PG⊥x轴于点G,由tan∠POB=tan∠BAO=可得,解得x的值后代入求得的值即可得点P的坐标. 第一种情况,当点P在x轴下方时,利用同样的方法可求点P的坐标.(2)抛物线y=ax2+bx+c过点E、D,代入可得,解得,所以,分两种情况:
①当抛物线y=ax2+bx+c开口向下时,满足∠QOB与∠BCD互余且符合条件的Q点的个数是4个,点Q在x轴的上、下方各有两个,点Q在x轴的上方时,直线OQ与抛物线y=ax2+bx+c有两个交点,抛物线y=ax2+bx+c与x轴的交点必须在x轴的正半轴上,与y轴的交点在y轴的负半轴,所以3a+1<0,解得a<,当a<符合条件的点Q有两个, 点Q在x轴的上方时,直线OQ与抛物线y=ax2+bx+c有两个交点,符合条件的点Q有两个.所以当a<,抛物线y=ax2+bx+c(a≠0)经过点E(1,1),点Q在抛物线上,且满足∠QOB与∠BCD互余,若符合条件的Q点的个数是4个;②当抛物线y=ax2+bx+c开口向上时,满足∠QOB与∠BCD互余且符合条件的Q点的个数是4个,点Q在x轴的上、下方各有两个,当点Q在x轴的上方时,直线OQ与抛物线y=ax2+bx+c有两个交点,符合条件的点Q有两个. 当点Q在x轴的下方时,直线OQ必须与抛物线y=ax2+bx+c有两个交点,符合条件的点Q才有两个.由题意可求的直线OQ的解析式为,直线OQ与抛物线y=ax2+bx+c由两个交点,所以,方程有两个不相等的实数根所以△=,即,画出二次函数图象并观察可得的解集为或(不合题意舍去),所以当,在x轴的下方符合条件的点Q有两个.所以当,抛物线y=ax2+bx+c(a≠0)经过点E(1,1),点Q在抛物线上,且满足∠QOB与∠BCD互余,若符合条件的Q点的个数是4个.
综上,当a<或时,抛物线y=ax2+bx+c(a≠0)经过点E(1,1),点Q在抛物线上,且满足∠QOB与∠BCD互余,符合条件的Q点的个数是4个.
试题解析:解:(1) ①过点D作DF⊥x轴于点F,如图所示.
∵∠DBF+∠ABO=90°,
∠BAO+∠ABO=90°,
∴∠DBF=∠BAO,
又∵∠AOB=∠BFD=90°,AB=BD,
∴△AOB≌△BFD,
∴DF=BO=1,BF=AO=2,
∴D点的坐标是(3,1),
根据题意得,,
∴,∴该抛物线的解析式为.
(Ⅰ)当点P在x轴的上方时,过点P作PG⊥x轴于点G,
则tan∠POB=tan∠BAO,即,
∴,解得,
∴,
∴点P的坐标是.
(2)a的取值范围是.
考点:二次函数综合题.
试题和解析 均来源网络 仅供参考
展开阅读全文