1、双闭环直流调速系统的建模与仿真实验研究摘要:采用MATLAB软件中的控制工具箱对直流电动机双闭环调速系统进行计算机辅助设计,并用SIMULINK进行动态数字仿真,同时查看仿真波形,以此验证设计的调速系统是否可行。本文从直流电动机的工作原理入手,建立了双闭环直流调速系统的数学模型,并详细分析了系统的原理及其静态和动态性能。关键词:直流电机,双闭环,调速,MATLAB,simulink Double closed loop DC speed control system modeling and simulation experiment research ABSTRUCT:Using MATLA
2、B software in the control of DC motor double closed loop speed regulation system of computer aided design, and using SIMULINK for dynamic digital simulation, and simulation waveform, to verify the design of control system is feasible. This article from the DC motors working principle, established th
3、e double closed loop DC speed governing system mathematical model, and a detailed analysis of the system principle and its static and dynamic performance. 正文:一、引言 由电力拖动自动控制系统一书里所知,对电机进行调速有三个方案:1.改变回路电阻。2.改变电枢电压。3.改变绕组磁通量。其中以通过改变电枢电压来进行电机调速较为普遍,因为该调速方法可以实现大范围平滑调速,是目前直流调速系统采用的主要调速方案。但电机的开环运行性能远远不能满足要求
4、。按反馈控制原理组成转速闭环系统是减小或消除静态转速降落的有效途径。转速反馈闭环是调速系统的基本反馈形式。可要实现高精度和高动态性能的控制,不尽要控制速度,同时还要控制速度的变化率也就是加速度。由电动机的运动方程可知加速度与电动机的转矩成正比关系,而转矩又与电动机的电流成正比。因而同时对速度和电流进行控制,称为实现高动态性能电机控制系统所必须完成的工作。因而也就有了转速、电流双闭环的控制结构。二、系统的工作原理2.1双闭环直流调速系统的介绍双闭环调速系统的工作过程和原理:电动机在启动阶段,电动机的实际转速(电压)低于给定值,速度调节器的输入端存在一个偏差信号,经放大后输出的电压保持为限幅值,速
5、度调节器工作在开环状态,速度调节器的输出电压作为电流给定值送入电流调节器, 此时则以最大电流给定值使电流调节器输出移相信号,直流电压迅速上升,电流也随即增大直到等于最大给定值, 电动机以最大电流恒流加速启动。电动机的最大电流(堵转电流)可以通过整定速度调节器的输出限幅值来改变。在电动机转速上升到给定转速后, 速度调节器输入端的偏差信号减小到近于零,速度调节器和电流调节器退出饱和状态,闭环调节开始起作用。对负载引起的转速波动,速度调节器输入端产生的偏差信号将随时通过速度调节器、电流调节器来修正触发器的移相电压,使整流桥输出的直流电压相应变化,从而校正和补偿电动机的转速偏差。另外电流调节器的小时间
6、常数, 还能够对因电网波动引起的电动机电枢电流的变化进行快速调节,可以在电动机转速还未来得及发生改变时,迅速使电流恢复到原来值,从而使速度更好地稳定于某一转速下运行。2.2双闭环直流调速系统的组成为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。两者之间实行嵌套连接,如图11所示。把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE。从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。这就形成了转速、电流双闭环调速系统。图1 转速、电流双闭环直流调速系统其中:ASR-转速调节器
7、ACR-电流调节器 TG-测速发电机 TA-电流互感器 UPE-电力电子变换器 -转速给定电压 Un-转速反馈电压 -电流给定电压 -电流反馈电压2.3转速、电流双闭环直流调速系统一般来说,我们总希望在最大电流受限制的情况下,尽量发挥直流电动机的过载能力,使电力拖动控制系统以尽可能大的加速度起动,达到稳态转速后,电流应快速下降,保证输出转矩与负载转矩平衡,进入稳定运行状态。这种理想的起动过程如图2所示。0nnt 图2理想启动过程图3双闭环直流调速系统动态结构图参考双闭环的结构图和一些电力电子的知识,采用机理分析法可以得到双闭环系统的动态结构图如图3所示。2.4系统的参数描述参数: 三、设计并确
8、定各环节相关系数 3.1电流环与转速环的设计在设计双闭环调速系统时,一般是先内环后外环,调节器的结构和参数取决于稳态精度和动态校正的要求,双闭环调速系统动态校正的设计与调试都是按先内环后外环的顺序进行,在动态过程中可以认为外环对内环几乎无影响,而内环则是外环的一个组成环节3。工程设计的步骤如下:1对已知系统的固有特性做恰当的变换和近似处理,以简化调节器结构。2根据具体情况选定预期特性,即典型系统或典型系统,并按照零极点相消的原则,确定串联调节器的类型。3根据要求的性能指标,确定调节器的有关P、I、D参数。4校正 3.2电流环的设计1、电流环的简化:图4简化后电流环按典型I型系统设计,ACR选P
9、I调节器。i=Tl,Ki=(KiKs)(iR)2、确定时间常数(1)整流装置滞后时间常数。三相桥式电路的平均失控时间;(2)电流滤波时间常数。三相桥式电路每个波头的时间是3.33ms,为了基本滤平波头,应有,因此取;(3)电流环小时间常数。按小时间常数近似处理,取。3、确定将电流环设计成何种典型系统根据设计要求,而且,因此,电流环可按典型型系统设计。4、电流调节器的结构选择电流调节器选用PI型,其传递函数为:5、选择电流调节器参数ACR超前时间常数:;电流环开环增益:因为要求,故应取,因此于是,ACR的比例系数为。6、计算电流调节器的电路参数图5 电流调节器原理图电流调节器原理如图5所示,按所
10、用运算放大器,取,各电阻和电容值计算如下:,取;,取;,取。3.3转速环的设计1、转速环的简化:U*n(s)aIdL(s)n (s)+-ASRCeTmsRId (s)a /b TSns+1+-图6 简化后的转速环2、确定时间常数:(1)电流环等效时间常数为;(2)转速滤波时间常数。根据所用测速发电机纹波情况,取;(3)转速环小时间常数。按小时间常数近似处理,取。3、转速环设计系统:由于设计要求转速无静差,转速调节器必须含有积分环节;有根据动态设计要求,应按典型型系统设计转速环。4、转速调节器的结构选择转速调节器选用PI型,其传递函数为:。5、选择转速调节器参数按跟随和抗干扰性能都较好的原则取h
11、=5,则ASR超前时间常数:;转速开环增益:;于是ASR的比例系数为:。6、计算转速调节器的电路参数转速调节器原理图如图7所示,按所用运算放大器,取,各电阻和电容值计算如下:,取;,取;,取。图7 转速调节器原理图四、仿真与结果分析双闭环直流调速系统定量仿真模型:双闭环直流调速系统定量仿真结果:转速环空载高速启动转速环满载高速启动转速环的抗扰分析:可以使电流快速达到,并保持略低于的值,实现快速启动,最终达到恒速。且具有抗扰作用,使转速维持在给定值。空载能比满载更快速启动。五、小结本文通过建立直流电机转速、电流双闭环调速系统数学模型设计,根据具体指标参数,应用工程方法设计了电流调节器和转速调节器,设计中选择合适的调节器类型,给出了系统动态结构图并进行了仿真和性能分析。利用MATLAB及其中的仿真工具Simulink,对所设计的电流环和转速环的阶跃信号进行了仿真计算,很容易绘制出各单位扰动曲线,并计算出阶跃扰动响应性能指标,从阶跃扰动响应曲线及其指标得出:对扰动信号,该系统具有很强的抗扰性能。