收藏 分销(赏)

数学:人教版九年级上-25.3-利用频率估计概率教案.doc

上传人:天**** 文档编号:4305973 上传时间:2024-09-05 格式:DOC 页数:6 大小:188.01KB
下载 相关 举报
数学:人教版九年级上-25.3-利用频率估计概率教案.doc_第1页
第1页 / 共6页
数学:人教版九年级上-25.3-利用频率估计概率教案.doc_第2页
第2页 / 共6页
数学:人教版九年级上-25.3-利用频率估计概率教案.doc_第3页
第3页 / 共6页
数学:人教版九年级上-25.3-利用频率估计概率教案.doc_第4页
第4页 / 共6页
数学:人教版九年级上-25.3-利用频率估计概率教案.doc_第5页
第5页 / 共6页
点击查看更多>>
资源描述

1、25.3 利用频率估计概率教学内容 1当试验的所有可能结果不是有限个,或各种可能结果发生的可能性不相等时,我们一般还要通过统计频率来估计概率 在同样条件下,大量重复试验时,根据一个随机事件发生的频率所逐渐稳定到的常数,可以估计这个事件发生的概率 2模拟实验教学目标 理解每次试验可能结果不是有限个,或各种可能结果发生的可能性不相等时,用频率估计概率的方法;能应用模拟实验求概率及其它们的应用 通过复习列举法求概率的条件和方法,引入相反方向的:每次试验的所有可能结果不是有限个,或各种可能结果发生的可能性不相等时,利用频率求概率的方法,同时也介绍利用模拟试验求概率的方法重难点、关键 1重点:讲清用频率

2、估计概率的条件及方法; 2难点与关键:比较用列举法求概率与用频率求概率的条件与方法教具、学具准备 小黑板、计算器教学过程 一、复习引入 (黑书)请同学们口答下面几个问题: 1用列举法求概率的条件是什么? 2用列举法求概率的方法是什么? 3A(事件),P(A)的取值范围是什么? 4列表法、树形图法是不是列举法,它在什么时候运用这种方法 老师口答点评: 1用列举法求概率的条件是:(1)每次试验中,可能出现的结果有限多个;(2)每次试验中,各种结果发生的可能性相等 2每次试验中,有n种可能结果(有限个),发生的可能性相等;事件A包含其中m种结果,则P(A)= 30P(A)1,其中不可能事件B,P(B

3、)=0,必然事件C,P(C)=1 4列表法、树形图法是列举法,它是在列出的所有结果很多或一次试验要涉及3个或更多的因素所用的方法 二、探索新知 前面的列举法只能在所有可能是等可能并且有限个的大前提下进行的,如果不满足上面二个条件,是否还可以应用以上的方法呢?不可以 也就是:当试验的所有可能结果不是有限个,或各种可能结果发生的可能性不相等时,我们一般还要通过统计频率来估计概率 在同样条件下,大量重复试验时,根据一个随机事件发生的频率所逐渐稳定到的常数,可以估计这个事件发生的概率 (学生活动),请同学们独立完成下面题目: 例1某林业部门要考查某种幼树在一定条件的移植成活率 (1)它能够用列举法求出

4、吗?为什么? (2)它应用什么方法求出? (3)请完成下表,并求出移植成活率移植总数(n)成活数(m)成活的频率() 10 8 0.80 50 47 _ 270 235 0.871 400 369 _ 750 662 _ 1500 1335 0.890 3500 3203 0.915 7000 6335 _ 900 8073 _ 14000 12628 0.902 (老师点评)解:(1)不能 理由:移植总数无限,每一棵小苗成活的可能性不相等 (2)它应该通过填完表格,用频率来估计概率 (3)略 所求的移植成活率这个实际问题的概率是为:0.9 例2某水果公司以2元/千克的成本新进了10000千克

5、的柑橘,如果公司希望这种柑橘能够获得利润5000元,那么在出售柑橘(已经去掉损坏的柑橘)时,每千克大约定价为多少元比较合适? 销售人员首先从所有的柑橘中随机地抽取若干柑橘,进行了“柑橘损坏表”统计,并把获得的数据记录在下表中,请你帮忙完成下表柑橘总质量()/千克损坏柑橘质量()/千克柑橘损坏的频率() 50 5.50 0.110 100 10.50 0.105 150 15.50 _ 200 19.42 _ 250 24.25 _ 300 30.93 _ 350 35.32 _ 400 39.24 _ 450 44.57 _ 500 51.54 _ 解:从填完表格,我们可得,柑橘损坏的概率为0

6、.1,则柑橘完成的概率为0.9 因此:在10000千克柑橘中完好柑橘的质量为100000.9=9000千克 完好柑橘的实际成本为: =2.22(元/千克) 设每千克柑橘的销价为x元,则应有: (x-2.22)9000=5000 解得:x2.8 因此,出售柑橘时每千克大约定价为2.8元可获利润5000元 例3一个学习小组有6名男生3名女生,老师要从小组的学生中先后随机地抽取3人参加几项测试,并且每名学生都可被重复抽取,你能设计一种试验来估计“被抽取的3人中有2名男生1名女生”的概率吗? 分析:因为要做从这9人中,抽取3人的试验确实工作量很大,为了简便这种试验,我们可用下面两种方法来简便 1取9张

7、形状完全相同的卡片,在6张卡片上分别写上16的整数表示男生,在其余的3张卡片上分别写上79的整数表示女生,把9张卡片混合起来并洗均匀 从卡片中放回的抽3次,随机抽取,每次抽取1张,并记录结果,经重复大量试验,就能够计算相关频率,估计出三人中两男一女的概率 2用计算器也能产生你指定的两个整数之间(包括这两个整数)的随机整数,也同样能够估计概率 以上这两种试验我们把它称为模拟实验从模拟实验中产生的一串串的数为“随机数” 三、巩固练习 教材P159 思考题,P161 练习 四、应用拓展 例4在车站、街旁、旅游点、学校门口常常看到以下的博彩游戏: 玩 法(1)记分卡共20张,其中5分、10分各10张;

8、(2)记分卡反放,每次任意摸10张,总分在下列分数中的可以得到与该分数对应的奖品;(3)每次摸奖付1元。分数100 95 90 85 80 75 70 65 60 55 50奖品彩电文曲星钢笔圆珠笔空门空门空门气球香皂计算器 手表 奖品丰厚,围观者蠢蠢欲动,但也奇怪,有数十个人参加摸奖,摸到空门的居多,根本没有人摸到价值高的奖品,是偶数还是必然,你认为呢?以摸到100分为例说明 分析:摸奖者摸10张卡片,总分在50至100之间,除了70、75、80三个分数没有外,其余的分数都有奖,并且奖品大都远远超过1元,所以人们觉得赢的机会非常大,可是事实恰恰相反,得到贵一点的奖品几乎没有人,是什么原因呢?

9、 原来在50至100之间的11个分数中,摸10张卡总分最有可能是70、75、80,而相应的奖品是空的,其余分数虽然都有奖品,甚至在两边的得分可得到高额奖品,但这些分数很难得到 解:是必然理由:以摸到100分为例,需连续摸到10张卡片都是10分的,第一次摸到10分的机会是,再摸第二次摸到10分卡片的机会是,第三次摸到的卡片是10分的机会是,依次类推,连续摸十次都是10分的机会只有,接近于二十万分之,以每次一元计算,需要近二十万元才能得到一台彩电! 五、归纳小结 (学生小结,老师点评) 本节课应掌握: 1用频率估计概率的条件及方法 2随机数的概念 3模拟实验的概念及它的各种方法 4应用以上的内容解

10、决一些实际问题 六、布置作业 1教材P162-163 复习巩固2 综合运用3,4 拓广探索5,6 2选用课时作业设计课时作业设计一、选择题 1在做布斗的投针实验时,若改变平行线间的距离与针的长度的比值,则( ) A针与平行线相交的概率不变 B针与平行线相交的概率会改变 C针与平行线相交的概率可能会改变; D以上说法都不对 2当试验的所有可能结果不是有限个,或各种可能结果发生的可能性不相等时,求(估计)概率是用( ) A通过统计频率估计概率 B用列举法求概率 C用列表法求概率 D用树形图法求概率二、填空题 1布斗投针实验的概率是_ 2事件发生的概率随着_的增加,逐渐_在某个数值附近,我们可以用平稳时_来估计这一事情的概率三、综合提高题 1一位同学抛掷一枚图钉,统计如下表:请根据下表用频率估计概率 2从10m高的地方往下抛手榴弹(体育用品),落地时,可能木柄先着地,也可能铁壳先着地,你估计哪种事件发生的概率大?将丢弹实验做100次,看实验结果与你的估计是否一致?答案:一、1B 2A二、1P= (Ld)其中L是针长,d为平行线的距离;2实验次数 频率三、10.46 2略

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服