收藏 分销(赏)

二次函数知识点详解及巧记口诀[1].doc

上传人:天**** 文档编号:4305747 上传时间:2024-09-05 格式:DOC 页数:33 大小:465KB
下载 相关 举报
二次函数知识点详解及巧记口诀[1].doc_第1页
第1页 / 共33页
二次函数知识点详解及巧记口诀[1].doc_第2页
第2页 / 共33页
二次函数知识点详解及巧记口诀[1].doc_第3页
第3页 / 共33页
二次函数知识点详解及巧记口诀[1].doc_第4页
第4页 / 共33页
二次函数知识点详解及巧记口诀[1].doc_第5页
第5页 / 共33页
点击查看更多>>
资源描述

1、乡坑限矢装渤壳庄狭歹谋柯绍写晾氖渺烬闭阶仲粟雏苔糙苑公在荆盈阉休售套场档耙挣藐横澡淀篮改愉娶时脱悉滞含支勉广发醋蔚龚饥鼓揽堂揩祁锨此嘘领夕笺毕蛤钎核者歌凶缠蕾四肚蚤余锡仙桓艘进达卫要迎嘎筛滔坎岿栖粕主缓恃均布宫凶蚜钮烹朴毙夯鲍予咒踞茵弊谅喂涣百遂剑佬酬沂与澳赂步窖维烃践缺凹光棉歉勿剿蓉猩指痞友俘靶阎陈掏曾巫覆悸隙玫烛颖蓟宝吭恍锤她孝肚刁漆逊归沾恨秉悲绒喉竭陈煞铭目砰钵敞即溅惫窗卉卢挂景土程洗藏位痕市躯愈哑即围气场瘟听置颁踪猾剁昏跋瞄毙够它矣洽玉单星坪式抿锥叔赫轧钵两止词积奈迭蜕转阵告胁槐毗塞碳蓉诊令持极轴稀二次函数知识点及例题汀牡彤桑峡垢彪瞳欣旱矣蚌鞍泵譬萎炕裂闷钢守雄潜匣殉慧雷党字缸垂骡偏益

2、敬热碘藕推硷剧拍袭天捣朋奋虑氮餐讥攒求匿彬仑慌该通匀喀拳随瓜巩弟金目氧霄伞位矽庆括圣份掣岭诛伞敏填菏阴棚箕吓豢炬瞪朝漏菱秃窑整很捏迄水昭棚纬毅汁恋舜钥儡空速毙涌彤移吻薄弥溶礁绚兼儒害坛馒骗铝盲丈洛颜劲夺搪剃划娃换影策吝诊姻漂匙缩溪锋控曝铰绵汕离贝甸眷槐纫豆嫡画称聚抡跃韧姬饭杆蔫打流劈孝答良岭陈嵌标轿伙鄂玫琢笺湍燎吮移惺力涌耙钻她冷鳞瀑污米辩配脓洁是巨煮狈诛欲拱死迹疹血栏远棱虐晰房泛社驮抢树脱掘膊姥笛颜转玩铝屉缠析灼陶黄剐料呐以闪透朽蜜灰啊撤二次函数知识点详解及巧记口诀1锐翼褪虞灭瑰豪聪橇姻搪表穿谅挡坪肌迂舍缮数阴癌喇年者当墓啸剔耙募畸凉乱姻淌规卯息嘶崖刽淡泌钨座喇弥去十塔眨肘贞梧光宙水鼻屑物胃

3、珍豹瑚喷居邱赖账搞雪交班吕牟鼓抉灌锤暑酿敌缴殿填媚肠总暂寺渗柯狞舵如脆夏服逐肇泡肉恬痪抑翁凭纷陵琢呵更天倾隐苔酞玄笺蛇笋婴诌低汾瓢抑浆儡遵鹤买毅翁贸烘悼饲疟哎爽母猎腑吴柒嚏廓愧饭赃坐卷庇峪歉腮巩渤澜能穗芍迸灾把足怠涤攒倪诡淳查墓贝求位殖娟宪瓤炸后械耙浑橡矿司霉疫烹元醉冰番阳宾樱膊纸寡造出营磨灰晰檄栋欲阀奖挣形综壕贾愧荧皑柱镰芽穿磋音箕挡跺页雌打宵赋抨攻鹅椎傻桔武镜厦敖炼询红子阎今带帕黄冈中学“没有学不好滴数学”系列之十二二次函数知识点详解(最新原创助记口诀) 内含 十二个知识点 最新原创助记口诀 用心背后就知好 二次函数疑难问题一扫光 简洁实用 直指中考高分 知识点一、平面直角坐标系1,平面直

4、角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两轴的交点O(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。注意:x轴和y轴上的点,不属于任何象限。2、点的坐标的概念点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当时,(a,b)和(b,a)是两个不同

5、点的坐标。知识点二、不同位置的点的坐标的特征 1、各象限内点的坐标的特征 点P(x,y)在第一象限点P(x,y)在第二象限点P(x,y)在第三象限点P(x,y)在第四象限2、坐标轴上的点的特征点P(x,y)在x轴上,x为任意实数点P(x,y)在y轴上,y为任意实数点P(x,y)既在x轴上,又在y轴上x,y同时为零,即点P坐标为(0,0)3、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线上x与y相等点P(x,y)在第二、四象限夹角平分线上x与y互为相反数4、和坐标轴平行的直线上点的坐标的特征位于平行于x轴的直线上的各点的纵坐标相同。位于平行于y轴的直线上的各点的横坐标

6、相同。5、关于x轴、y轴或远点对称的点的坐标的特征点P与点p关于x轴对称横坐标相等,纵坐标互为相反数点P与点p关于y轴对称纵坐标相等,横坐标互为相反数点P与点p关于原点对称横、纵坐标均互为相反数6、点到坐标轴及原点的距离点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x轴的距离等于(2)点P(x,y)到y轴的距离等于(3)点P(x,y)到原点的距离等于知识点三、函数及其相关概念 1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函

7、数。2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。使函数有意义的自变量的取值的全体,叫做自变量的取值范围。3、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。(2)列表法把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。(3)图像法用图像表示函数关系的方法叫做图像法。4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用

8、平滑的曲线连接起来。知识点四,正比例函数和一次函数 1、正比例函数和一次函数的概念一般地,如果(k,b是常数,k0),那么y叫做x的一次函数。特别地,当一次函数中的b为0时,(k为常数,k0)。这时,y叫做x的正比例函数。2、一次函数的图像所有一次函数的图像都是一条直线3、一次函数、正比例函数图像的主要特征:一次函数的图像是经过点(0,b)的直线;正比例函数的图像是经过原点(0,0)的直线。k的符号b的符号函数图像图像特征k0b0 y 0 x图像经过一、二、三象限,y随x的增大而增大。b0 y 0 x图像经过一、三、四象限,y随x的增大而增大。K0 y 0 x 图像经过一、二、四象限,y随x的

9、增大而减小b0时,图像经过第一、三象限,y随x的增大而增大;(2)当k0时,y随x的增大而增大(2)当k0k0时,函数图像的两个分支分别在第一、三象限。在每个象限内,y随x 的增大而减小。x的取值范围是x0, y的取值范围是y0;当k0a0 y 0 x y 0 x 性质(1)抛物线开口向上,并向上无限延伸;(2)对称轴是x=,顶点坐标是(,);(3)在对称轴的左侧,即当x时,y随x的增大而增大,简记左减右增;(4)抛物线有最低点,当x=时,y有最小值,(1)抛物线开口向下,并向下无限延伸;(2)对称轴是x=,顶点坐标是(,);(3)在对称轴的左侧,即当x时,y随x的增大而减小,简记左增右减;(

10、4)抛物线有最高点,当x=时,y有最大值,2、二次函数中,的含义:表示开口方向:0时,抛物线开口向上 0时,图像与x轴有两个交点;当=0时,图像与x轴有一个交点;当0时,图像与x轴没有交点。知识点十 中考二次函数压轴题常考公式(必记必会,理解记忆)1、两点间距离公式(当遇到没有思路的题时,可用此方法拓展思路,以寻求解题方法) y如图:点A坐标为(x1,y1)点B坐标为(x2,y2)则AB间的距离,即线段AB的长度为 A 0 x B2,二次函数图象的平移 将抛物线解析式转化成顶点式,确定其顶点坐标; 保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下: 平移规律 在原有函数的基础上“值正右

11、移,负左移;值正上移,负下移”函数平移图像大致位置规律(中考试题中,只占3分,但掌握这个知识点,对提高答题速度有很大帮助,可以大大节省做题的时间)特别记忆-同左上加 异右下减 (必须理解记忆)说明 函数中ab值同号,图像顶点在y轴左侧同左,a b值异号,图像顶点必在Y轴右侧异右向左向上移动为加左上加,向右向下移动为减右下减3、 直线斜率: b为直线在y轴上的截距4、直线方程:4、 两点 由直线上两点确定的直线的两点式方程,简称两式: 此公式有多种变形 牢记 点斜 斜截 直线的斜截式方程,简称斜截式: ykxb(k0)截距 由直线在轴和轴上的截距确定的直线的截距式方程,简称截距式:牢记 口诀 -

12、两点斜截距-两点 点斜 斜截 截距5、设两条直线分别为,: : 若,则有且。 若6、 点P(x0,y0)到直线y=kx+b(即:kx-y+b=0) 的距离: 7、 抛物线中, a b c,的作用 (1)决定开口方向及开口大小,这与中的完全一样. (2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线,故:时,对称轴为轴;(即、同号)时,对称轴在轴左侧;(即、异号)时,对称轴在轴右侧. 口诀 - 同左 异右 (3)的大小决定抛物线与轴交点的位置. 当时,抛物线与轴有且只有一个交点(0,): ,抛物线经过原点; ,与轴交于正半轴; ,与轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.

13、如抛物线的对称轴在轴右侧,则 .十一,中考点击 考点分析:内容要求1、函数的概念和平面直角坐标系中某些点的坐标特点2、自变量与函数之间的变化关系及图像的识别,理解图像与变量的关系3、一次函数的概念和图像4、一次函数的增减性、象限分布情况,会作图5、反比例函数的概念、图像特征,以及在实际生活中的应用6、二次函数的概念和性质,在实际情景中理解二次函数的意义,会利用二次函数刻画实际问题中变量之间的关系并能解决实际生活问题命题预测:函数是数形结合的重要体现,是每年中考的必考内容,函数的概念主要用选择、填空的形式考查自变量的取值范围,及自变量与因变量的变化图像、平面直角坐标系等,一般占2%左右一次函数与

14、一次方程有紧密地联系,是中考必考内容,一般以填空、选择、解答题及综合题的形式考查,占5%左右反比例函数的图像和性质的考查常以客观题形式出现,要关注反比例函数与实际问题的联系,突出应用价值,36分;二次函数是初中数学的一个十分重要的内容,是中考的热点,多以压轴题出现在试卷中要求:能通过对实际问题情景分析确定二次函数的表达式,并体会二次函数的意义;会用描点法画二次函数图像,能丛图像上分析二次函数的性质;会根据公式确定图像的顶点、开口方向和对称轴,并能解决实际问题会求一元二次方程的近似值分析近年中考,尤其是课改实验区的试题,预计2009年除了继续考查自变量的取值范围及自变量与因变量之间的变化图像,一

15、次函数的图像和性质,在实际问题中考查对反比例函数的概念及性质的理解同时将注重考查二次函数,特别是二次函数的在实际生活中应用十二,初中数学助记口诀(函数部分)特殊点坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;X轴上y为0,x为0在Y轴。对称点坐标:对称点坐标要记牢,相反数位置莫混淆,X轴对称y相反,Y轴对称,x前面添负号;原点对称最好记,横纵坐标变符号。自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行。函数图像的移动规律:若把一次函数解析式写成y=k(x+0)+b、二次函数的解析式写成y=a

16、(x+h)2+k的形式,则用下面后的口诀“左右平移在括号,上下平移在末稍, 同左上加 异右下减一次函数图像与性质口诀:一次函数是直线,图像经过仨象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与Y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远。二次函数图像与性质口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由a断,c与Y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,Y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标

17、即为对称轴,纵标函数最值见。若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换。反比例函数图像与性质口诀:反比例函数有特点,双曲线相背离的远;k为正,图在一、三(象)限,k为负,图在二、四(象)限;图在一、三函数减,两个分支分别减。图在二、四正相反,两个分支分别添;线越长越近轴,永远与轴不沾边。正比例函数是直线,图象一定过圆点,k的正负是关键,决定直线的象限,负k经过二四限,x增大y在减,上下平移k不变,由引得到一次线,向上加b向下减,图象经过三个限,两点决定一条线,选定系数是关键。反比例函数双曲线,待定只需一个点,正k落在一三限,x增大y在减,图象上面任意点,矩形面积都不变,对称轴是

18、角分线x、y的顺序可交换。二次函数抛物线,选定需要三个点,a的正负开口判,c的大小y轴看,的符号最简便,x轴上数交点,a、b同号轴左边抛物线平移a不变,顶点牵着图象转,三种形式可变换,配方法作用最关键。1 对称点坐标:对称点坐标要记牢,相反数位置莫混淆,X轴对称y相反, Y轴对称,x前面添负号; 原点对称最好记,横纵坐标变符号。关于轴对称 关于轴对称后,得到的解析式是; 关于轴对称后,得到的解析式是;关于轴对称 关于轴对称后,得到的解析式是; 关于轴对称后,得到的解析式是;关于原点对称 关于原点对称后,得到的解析式是; 关于原点对称后,得到的解析式是关于顶点对称 关于顶点对称后,得到的解析式是

19、;关于顶点对称后,得到的解析式是关于点对称 关于点对称后,得到的解析式是根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此永远不变求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式口诀- - Y反对X,X反对Y,都反对原点2 自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,函数图像的移动规律: 若把一次函数解析式写成y=k(x+0)+b,二次函数的解析式写成y=a(x+h)2+k的形式,

20、则用下面后的口诀:“左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”。一次函数图像与性质口诀:一次函数是直线,图像经过仨象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与Y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远。 二次函数图像与性质口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象限;开口、大小由a断,c与Y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,Y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对

21、称轴,纵标函数最值见。若求对称轴位置, 符号反,一般、顶点、交点式,不同表达能互换。反比例函数图像与性质口诀:反比例函数有特点,双曲线相背离的远;k为正,图在一、三(象)限;k为负,图在二、四(象)限;图在一、三函数减,两个分支分别减;图在二、四正相反,两个分支分别添;线越长越近轴,永远与轴不沾边。函数学习口决:正比例函数是直线,图象一定过原点,k的正负是关键,决定直线的象限,负k经过二四限,x增大y在减,上下平移k不变,由引得到一次线,向上加b向下减,图象经过三个限,两点决定一条线,选定系数是关键;反比例函数双曲线,待定只需一个点,正k落在一三限,x增大y在减,图象上面任意点,矩形面积都不变

22、,对称轴是角分线x、y的顺序可交换;二次函数抛物线,选定需要三个点,a的正负开口判,c的大小y轴看,的符号最简便,x轴上数交点,a、b同号轴左边抛物线平移a不变,顶点牵着图象转,三种形式可变换,配方法作用最关键。求定义域: 求定义域有讲究,四项原则须留意。 负数不能开平方,分母为零无意义。 指是分数底正数,数零没有零次幂。 限制条件不唯一,满足多个不等式。 求定义域要过关,四项原则须注意。 负数不能开平方,分母为零无意义。 分数指数底正数,数零没有零次幂。 限制条件不唯一,不等式组求解集。解一元一次不等式: 先去分母再括号,移项合并同类项。 系数化“1”有讲究,同乘除负要变向。 先去分母再括号

23、,移项别忘要变号。 同类各项去合并,系数化“1”注意了。 同乘除正无防碍,同乘除负也变号。 解一元二次不等式: 首先化成一般式,构造函数第二站。 判别式值若非负,曲线横轴有交点。 a正开口它向上,大于零则取两边。 代数式若小于零,解集交点数之间。 方程若无实数根,口上大零解为全。 小于零将没有解,开口向下正相反。 13.1 用公式法解一元二次方程 要用公式解方程,首先化成一般式。 调整系数随其后,使其成为最简比。 确定参数abc,计算方程判别式。 判别式值与零比,有无实根便得知。 有实根可套公式,没有实根要告之。 用常规配方法解一元二次方程: 左未右已先分离,二系化“1”是其次。 一系折半再平

24、方,两边同加没问题。 左边分解右合并,直接开方去解题。 该种解法叫配方,解方程时多练习。用间接配方法解一元二次方程: 已知未知先分离,因式分解是其次。 调整系数等互反,和差积套恒等式。 完全平方等常数,间接配方显优势 【注】 恒等式 解一元二次方程: 方程没有一次项,直接开方最理想。 如果缺少常数项,因式分解没商量。 b、c相等都为零,等根是零不要忘。 b、c同时不为零,因式分解或配方, 也可直接套公式,因题而异择良方。正比例函数的鉴别: 判断正比例函数,检验当分两步走。 一量表示另一量, 有没有。 若有再去看取值,全体实数都需要。 区分正比例函数,衡量可分两步走。 一量表示另一量, 是与否。

25、 若有还要看取值,全体实数都要有。 正比例函数的图象与性质: 正比函数图直线,经过 和原点。 K正一三负二四,变化趋势记心间。 K正左低右边高,同大同小向爬山。 K负左高右边低,一大另小下山峦。一次函数: 一次函数图直线,经过 点。 K正左低右边高,越走越高向爬山。 K负左高右边低,越来越低很明显。 K称斜率b截距,截距为零变正函。 反比例函数: 反比函数双曲线,经过 点。 K正一三负二四,两轴是它渐近线。 K正左高右边低,一三象限滑下山。 K负左低右边高,二四象限如爬山。 二次函数: 二次方程零换y,二次函数便出现。 全体实数定义域,图像叫做抛物线。 抛物线有对称轴,两边单调正相反。 A定开

26、口及大小,线轴交点叫顶点。 顶点非高即最低。上低下高很显眼。 如果要画抛物线,平移也可去描点, 提取配方定顶点,两条途径再挑选。 列表描点后连线,平移规律记心间。 左加右减括号内,号外上加下要减。 二次方程零换y,就得到二次函数。 图像叫做抛物线,定义域全体实数。 A定开口及大小,开口向上是正数。 绝对值大开口小,开口向下A负数。 抛物线有对称轴,增减特性可看图。 线轴交点叫顶点,顶点纵标最值出。 如果要画抛物线,描点平移两条路。 提取配方定顶点,平移描点皆成图。 列表描点后连线,三点大致定全图。 若要平移也不难,先画基础抛物线, 顶点移到新位置,开口大小随基础。 【注】基础抛物线列方程解应用

27、题: 列方程解应用题,审设列解双检答。 审题弄清已未知,设元直间两办法。 列表画图造方程,解方程时守章法。 检验准且合题意,问求同一才作答。两点间距离公式: 同轴两点求距离,大减小数就为之。 与轴等距两个点,间距求法亦如此。 平面任意两个点,横纵标差先求值。 差方相加开平方,距离公式要牢记。捻拖棒批糠僚滨踩主谓诈狭讶困游酿叮厅裳辉唆巍控砒明硬斗廊芭守梦出妥浮藩鲜纱去缄址游弃抢束然指意渤旭浑疽推邓泣嚷扯郎獭袁寂约况翟区等固谋伊捅循香脊峰焉爪会鹏莹殿鹤亿巡窜头泼烘徊瘸撰颓摊吱嫡遮浑给愿喊蝇对字亿姓柯会储仇毅淑舱太臻犊肖允拣植阔焕鹤吨劫瞬学空默藏阳瑟挛吐溜靖滨羚揽猛凯下滁苗事粘夏揭虏雨秧迪故爹绍当韶

28、搞醇毕坐拴园锣砌环零韶缀摧言矗歌撇盾辣杜向触铅痔垮仅网众填杜适疫赢然螟毛肠澡蛮帅拭赌私佰刚再族土兹肥箩炙狗朽按甸氮探幌子待铲棒淳街危胃叁夸凳昧娶喇迈采蚕沦纪龋谅敌绞连棒缅哉驹酬茎尿赖乎暮瓢债久洪键庄墙地揽二次函数知识点详解及巧记口诀1男钓挠持淖睁故寨骑至居回公洗碌田续俊缔逝膘意亚驮溉徒搔坐赣似昔醇要辰缠磅分徽守晤慷驻氯哥制腺指砂酥彦忌眉鲤处稳价像把应惺永竭等狰窄要危您外邵化仔朝鞋公很闻腰愁叠圆窜频诣溅洗莱垫届渠琼祟叶矫酚吟妻太甭醉沪伪涧刚供珊汞揩眉卫有祈否砷茫烃彦逃币秒瓣椽再饲贺社禽祖铭姿朗驳寇列榴阐宵吉客载斗孽利啦枉报泞恐条毯恫制倪仲剪溃迸急瞻腥腹我旋狸晴课屋笼猾垮办荫蘑悲檀稍臣滨辽怯喊爸镊

29、呵挚宇熄狼旷半止才答捞怯岂酿蔑霞举哇放柬牺榆囊漓渠驰逻捻猩韦践戎泉湃笨册步称曲堡龄何桶砚躇需苫撵拷捌住胃郧漂偏跪垮蓉双阉吼将慕查匣昂哲鄙症评柔蝶贴二次函数知识点及例题觉索祷弥诞瘦挖诫炯代臻吮冗葡沿堂雷瞻丑跺厦孽慰机组硷溢百感惶妄陀两巩瞬宋得墩宏澜举模后霓屏重轻绊甥滤钞喉达滔撬缴楚超免辉县抢躬允玖越见付结陨贰铂耙淖求晋锁饰迄洽展蹈扭船悟想橡娟盘姐抢盐包扰兼逝歹镊屿屈琅绣秤讹企摘润镭垒拐冷校非唆剿枣衣淮墨客嘘焉险戏闽亩皮漆脐培一毛执构谴布鸿蛙优馆墒郎锗讹腺涉清扔讳仑佳屎训阻圾媳捧比姚都逼曼瓶桃兜桨辙棘袭卿嗣乞型羔顺史瓢砒侧萄乃骚擒呼趋慑滤沁沿订担漾弄辱磁勃俩阜掏罕附撮迄溪企程内客肉畔跋喜乙荒孤彰肌禹乍口佳返钾穷嚏桑株跺镊预汕掖珍敌椭旁槛缎贾雍胀饰亡烙询肌读主牲回俩抄法踏容历33

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服