1、文新教育集团个性化教案教学主题:周期问题二(数列中的周期问题)教学重难点:正确理解题意,从中找准变化的规律,利用这些规律作为解题的依据;要确定解题的突破口,解决实际问题。教学过程:1.导入问题导入例如:1,2,1,2,1,2,那么第18个数是多少?2.呈现例1.小和尚在地上写了一列数:7,0,2,5,3,7,0,2,5,3你知道他写的第81个数是多少吗?你能求出这81个数相加的和是多少吗?解析:从排列上可以看出这组数按7,0,2,5,3依次重复排列,那么每个周期就有5个数81个数则是16个周期还多1个,第1个数是7,所以第81个数是7,1每个周期各个数之和是:再用每个周期各数之和乘以周期次数再
2、加上余下的各数,即可得到答案,所以,这81个数相加的和是279例2.(25个4),积的个位数是几? 24个2相乘,积末位数字是几?解析:按照乘数的个数,积的末位数字的规律是:4,6,4,6,4,6,奇数个4相乘得数的末位数字是4,偶数个4相乘得数的末位数是6,所以1,25个4相乘,积的末位数字是4按照乘数的个数,末位数字的规律是2,4,8,6,2,4,8,6,4个一组,所以24个2相乘,积末位数字是6例3.12个同学围成一圈做传手绢的游戏,如图 从1号同学开始,顺时针传l00次,手绢应在谁手中? 从1号同学开始,逆时针传l00次,手绢又在谁手中? 从1号同学开始,先顺时针传l56次,然后从那个
3、同学开始逆时针传143次,再顺时针传107次,最后手绢在谁手中?解析:因为一圈有l2个同学,所以传一圈还回到原来同学手中,现在,从1号开始,顺时针传l00次,我们先用除法求传了几圈、还余几次(圈)4(次)从1号同学顺时针传4次正好传到5号同学手中与第一小题的道理一样,先做除法(圈)4(次)这4次是逆时针传,正好传到9号同学手中(如图)先顺时针传156次,然后逆时针传l43次,相当于顺时针传(次);再顺时针传l07次,与13次合并,相当于顺时针传(次),(圈),手绢又回到l号同学手中例4.甲、乙两人对一根3米长的木棍涂色。首先,甲从木棍的端点开始涂黑色5厘米,间隔5厘米不涂色,再涂5厘米黑色,这
4、样交替做到底。然后,乙从木棍同一端点开始留出6厘米不涂色,然后涂6厘米黑色,再间隔6厘米不涂色,交替做到底,最后木棍上没有被涂黑色部分的总长度是多少?解析:此题最好画图为同学们示意:在前30厘米内未被涂黑的是:1,3,5,在31-60厘米内的是:4,2,因此60厘米一个周期:(1+3+5+4+2)300/60=75厘米 .例5.右图中,任意三个连续的小圆圈内三个数的连乘积都是891,那么B代表多少?解析:根据“任意三个连续的小圆圈内三个数的连乘积都是891”,可知任意一个小圆圈中的数和与它相隔2个小圆圈的小圆圈中的数是相同的.于是:B=891(99)=11例6.实验室里有一只特别的钟,一圈共有
5、20个格每过7分钟,指针跳一次,每跳一次就要跳过9个格,今天早晨8点整的时候,指针恰好从0跳到9,问:昨天晚上8点整的时候指针指着几?解析:昨晚8点至今早8点,共经历(分钟),说明从今早8点整起,7分钟,7分钟往回数,昨晚8点后,第1次指针跳是8点6分,直到今早7点53分,指针正好跳到“0”位,指针共跳了102次由于每次跳9格,所以共跳了(格)每20格一圈,因此从“0”位开始,往回倒45圈,还要倒回18格,正是昨晚8点时指针所指处:,因此昨晚8点整时指针正指着2例7.有一个111位数,各位数字都是1,这个数除以6,余数是几?商的末位数字是几?解析:我们可以用列表的方法寻求周期通过表格我们可以发
6、现,余数出现的周期为3(1,5,3);第1个“1”上相对应的商为“0”,从第二个“1”开始,商的末位数字的周期为3(1,8,5)因为,所以这个数除以6后余数的末位数字是3;因为2,所以这个数除以6后商的末位数字是8例8.求的个位数字.解析:由128432知,的个位数与的个位数相同,等于6。由292141知,的个位数与的个位数相同,等于9.因为69,在减法中需向十位借位,所以所求个位数字为1697. 3.练习与检测1.根据下面一组数列的规律求出51是第几个数? 1、2、3、4、6、7、8、9、11、12、13、14、16、17解析:观察题目可知数列个位数字每九个数一组,十位数字依次增加,04共五
7、个数,则可列式为:591=46,即51为第46个数。2.紧接着1989后面写一串数字,写下的每一个数字都是它前面两个数字的乘积的个位数例如,在9后面写2,在2后面写8得到一串数字:19892868,问:这串数字从1开始,往右数,第l999个数字是几?这1999个数字的和是多少?解析:根据题意,写出这列数的前面部分数字:19892868842868842“286884”这6个数字重复出现,周期是6第1999个数字是:因为,所以,第l999个数字是6这1999个数字的和是:3. 8个队员围成一圈做传球游戏,从号开始,按顺时针方向向下一个人传球在传球的同时,按顺序报数当报到72时,球在几号队员手上?
8、解析:将8名队员看作一组,每组报8个数,72个数可以分成几组:组,没有余数,球正好在一组的最后一位队员手中,因此球应该在8号队员手上4.课外活动时,甲、乙、丙、丁四人排成一个圆圈依次报数甲报“1”,乙报“2”,丙报“3”,丁报“4”,这样每人报的数总比前一个人多1问“34”是谁报的?“71”是谁报的?解析:解析:根据题意,甲从“1”开始报数,一共报了34次因为是4个人在报数,所以报4次就要重复一遍,也就是说是以4为一个周期重复的34里面有8个周期还余2次,所以“34”应是重复8遍以后第二个人报的,即乙报的3,所以“71”应是第三个人报的,即丙报的5.有一个1111位数,各位数字都是1,这个数除
9、以6,余数是几?商的末位数字是几?解析:余数出现的周期为3(1,5,3);第1个“1”上相对应的商为“0”,从第二个“1”开始,商的末位数字的周期为3(1,8,5),因为1,所以这个数除以6后余数的末位数字是1;因为,所以这个数除以6后商的末尾数字是54.小结周期性问题的基本解题思路是:首先要正确理解题意,从中找准变化的规律,利用这些规律作为解题的依据;其次要确定解题的突破口。主要方法有观察法、逆推法、经验法等。主要问题有年月日、星期几问题等。5.作业1. 如图,电子跳蚤每跳一步,可从一个圆圈跳到相邻的圆圈现在,一只红跳蚤从标有数字的圆圈按顺时针方向跳了1991步,落在一个圆圈里一只黑跳蚤也从
10、标有数字的圆圈起跳,但它是沿着逆时针方向跳了1949步,落在另一个圆圈里问:这两个圆圈里数字的乘积是多少?2. 如右图,把18八个号码摆成一个圆圈,现有一个小球,第一天从1号开始按顺时针方向前进329个位置,第二天接着按逆时针方向前进485个位置,第三天又顺时针前进329个位置,第四天再逆时针前进485个位置如此继续下去,问至少经过几天,小球又回到原来的1号位置?3. 如右图,有16把椅子摆成一个圆圈,依次编上从1到16的号码.现在有一人从第1号椅子顺时针前进328个,再逆时针前进485个,又顺时针前进328个,再逆时针前进485个,又顺时针前进136个,这时他到了第几号椅子?4. 算式的得数
11、的尾数是几?作业参考答案1.解析:解答此类问题时,只要能发现旋转周期现象,并充分加以利用,就能较快找到解题的关键本题中,不难看出这是一个与周期性有关的问题,电子跳蚤每跳12步就回到了原来的位置,如此循环,周期为12(1)因为,所以,红跳蚤跳了1991步后落到了标有数字11的圆圈(2)因为,所以,黑跳蚤跳了1949步后落到了标有数字7的圆圈(3)求的乘积是.2.解析:根据题意,小球按顺时针、逆时针、顺时针、逆时针两天一个周期循环变换方向.每一个周期中,小球实际上是按逆时针方向前进485-329=156(个)位置. 1568=194,就是说,每个周期(2天)中,小球是逆旋转了19周后再逆时针前进4
12、个位置. 要使小球回到原来的1号位,至少应逆时针前进8个位置. 84=2(个)周期,22=4(天),所以至少要用4天,小球才又回到原来“1”号位置.3.解析:这个人顺时针前进了328+328+136=792个位置,由于79216=498,所以他走到9号位置.又这个人逆时针共退回485+485=970个位置,由于970166010,因此这个人到了第15(=9+16-10)号椅子.4.解析:这是一道很经典的题目,分别找规律,我们只看个位数就够了:7:7,9,3,1,367/4=913,个位数是3 ;2:2,4,8,6,762/4=1902,个位数是4 ;3:3,9,7,1,123/4=303,个位数是7 ;因此个位数:(3+4)7=49 .