1、 七年级下数学复习巩固第五章 相交线与平行线【知识回顾】:1、 如果与是对顶角,则其关系是:_如果与是邻补角,则其关系是:_ 如果与互为余角,则其关系是_3、点到直线距离是:_ 两点间的距离是:_ 两平行线间的距离是指:_ _4、在同一平面内,两条直线的位置关系有_种,它们是_5、平行公理是指:_ 如果两条直线都与第三条直线平行,那么_ 即:6、平行线的判定方法有: 、_、_、_、_7、平行线的性质有: 、_、_、_、如果一个角的两边分别平行于另一个角的两边,那么这两个角_、如果一个角的两边分别垂直于另一个角的两边,那么这两个角_8、命题是指_ 每一个命题都可以写成_的形式,“对顶角相等”的题
2、设是_,结论是_9、平移:定义:把一个图形整体沿着某一_移动_,图形的这种移动,叫做平移变换,简称平移图形平移方向不一定是水平的平移后得到的新图形与原图形的_和_完全相同新图形中的每一点与原图形中的对应点的连线段_且_第五章复习题1、如图所示,1和2是对顶角的是( ) 2、如图ABCD可以得到( )A、12 B、23 C、14 D、343、直线AB、CD、EF相交于O,则123( )。A、90 B、120 C、180 D、1404、如图所示,直线a 、b被直线c所截,现给出下列四种条件:26 28 14180 38,其中能判断是ab的条件的序号是( )A、 B、 C、 D、5、某人在广场上练习
3、驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是( )A、第一次左拐30,第二次右拐30B、第一次右拐50,第二次左拐130C、第一次右拐50,第二次右拐130 D、第一次向左拐50,第二次向左拐1306、下列哪个图形是由左图平移得到的( )7、如图,在一个有44个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD面积的比是( )A、3:4 B、5:8 C、9:16 D、1:28、下列现象属于平移的是( ) 打气筒活塞的轮复运动, 电梯的上下运动, 钟摆的摆动, 转动的门, 汽车在一条笔直的马路上行走A、 B、 C、 D、9、下列说法正确的是( )A、有且只有一条直线与已
4、知直线平行 B、垂直于同一条直线的两条直线互相垂直C、从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。D、在平面内过一点有且只有一条直线与已知直线垂直。10、直线ABCD,B23,D42,则E( )A、23 B、42 C、65 D、1911、直线AB、CD相交于点O,若AOC100,则AOD_。12、若ABCD,ABEF,则CD_EF,其理由是_。13、如图,在正方体中,与线段AB平行的线段有_。14、奥运会上,跳水运动员入水时,形成的水花是评委评分的一个标准,如图所示为一跳水运动员的入水前的路线示意图。按这样的路线入水时,形成的水花很大,请你画图示意运动员如何入水才能减小水花? 1
5、5、把命题“等角的补角相等”写成“如果那么”的形式是:_。16、如果两条平行线被第三条直线所截,一对同旁内角的度数之比是2:7,那么这两个角分别是_。17、如图所示,直线ABCD,175,求2的度数。18、如图,直线AB 、CD相交于O,OD平分AOF,OECD于点O,150,求COB 、BOF的度数。19、如图,在长方形ABCD中,AB10cm,BC6cm,若此长方形以2cm/S的速度沿着AB方向移动,则经过多长时间,平移后的长方形与原来长方形重叠部分的面积为24?20、ABC在网格中如图所示,请根据下列提示作图(1)向上平移2个单位长度。(2)再向右移3个单位长度。21、如图,选择适当的方
6、向击打白球,可使白球反弹后将红球撞入袋中。此时,12,34,如果红球与洞口的连线与台球桌面边缘的夹角530,那么1等于多少度时,才能保证红球能直接入袋?1234522、把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M 、N的位置上,若EFG55,求1和2的度数。23、如图,E点为DF上的点,B为AC上的点,12,CD,那么DFAC,请完成它成立的理由12,23 ,14( )34( )_ ( )CABD( )CD( )DABD( )DFAC( )24、如图,DO平分AOC,OE平分BOC,若OAOB,(1)当BOC30,DOE_ 当BOC60,DOE_(2)通过上面的计算
7、,猜想DOE的度数与AOB有什么关系,并说明理由。第六章 实数复习知识点1 算术平方根算术平方根的定义:一般的,如果一个_的平方等于a,即_,那么这个_叫做a的算术平方根a的算术平方根记为_,a叫做_规定:0的算术平方根是_算术平方根的表示方法: (用含a的式子表示)算术平方根具有 性,即被开方数a 0,本身 0,必须同时成立知识点2:平方根 平方根的定义:一般的,如果_,那么这个数叫做a的平方根这就是说,如果_,那么x 叫做a的平方根, _平方根的表示方法 (用含a的式子表示)平方根的性质:一个正数有_个平方根,它们_;0的平方根是_;负数_知识点3:立方根立方根的定义:一般的,如果_,那么
8、这个数叫做a的立方根或三次方根。这就是说,如果_,那么x叫做a的立方根, 立方根的表示方法: (用含a的式子表示)立方根的性质:正数的立方根是_数;负数的立方根是_数;0的立方根是_知识点4:重要公式公式一: = 公式二: = (a0)公式三: = ;公式四: = 公式五: = 知识点五:实数定义及分类无理数的定义: 实数的定义: 实数与 上的点是一一对应的第六章复习题一、填空题1的相反数是_;的绝对值是_2大于的所有负整数是_3一个数的绝对值和算术平方根都等于它本身,那么这个数是_4如果aa,那么实数a的取值范围是_5已知a3,且ab0,则ab的值为_6已知bac,化简abbcca_7若无理
9、数a满足不等式1a4,请写出两个符合条件的无理数_二、选择题1下列说法正确的是( )A正实数和负实数统称实数B正数、零和负数统称为有理数C带根号的数和分数统称实数D无理数和有理数统称为实数2下列计算错误的是( )ABCD3下列说法正确的是( )A数轴上任一点表示唯一的有理数B数轴上任一点表示唯一的无理数C两个无理数之和一定是无理数D数轴上任意两点之间都有无数个点4已知a、b是实数,下列命题结论正确的是( )A若ab,则a2b2B若ab,则a2b2C若ab,则a2b2D若a3b3,则a2b2三、计算题1234已知求xy的值5已知是nm3的算术平方根,是m2n的立方根,求BA的平方根6已知a是的整
10、数部分,b是它的小数部分,求(a)3(b3)2的值7知5x19的立方根是4,求2x7的平方根第七章 平面直角坐标系【知识回顾】1、平面直角坐标系:在平面内画两条_、_的数轴,组成平面直角坐标系2、平面直角坐标系中点的特点:四个象限中的点的坐标的符号特征:第一象限,第二象限( ),第三象限( )第四象限( )已知坐标平面内的点A(m,n)在第四象限,那么点(n,m)在第_象限坐标轴上的点的特征:轴上的点_为0,轴上的点_为0;如果点P在轴上,则_;如果点P在轴上,则_如果点P在轴上,则_P的坐标为( )当_时,点P在横轴上,P点坐标为( )如果点P满足,那么点P必定在_轴上象限角平分线上的点的特
11、征:一三象限角平分线上的点_;二四象限角平分线上的点_;如果点P在一三象限的角平分线上,则_;如果点P在二四象限的角平分线上,则_如果点P在原点,则_=_已知点A在第二象限的角平分线上,则_平行于坐标轴的点的特征:平行于轴的直线上的所有点的_坐标相同,平行于轴的直线上的所有点的_坐标相同如果点A,点B且AB/轴,则_如果点A,点B且AB/轴,则_2、 点P到轴的距离为_,到轴的距离为_,到原点的距离为_;3、点P到轴的距离分别为_和_点A到轴的距离为_,到轴的距离为_点B到轴的距离为_,到轴的距离为_点P到轴的距离为_,到轴的距离为_点P到轴的距离为2,到轴的距离为5,则P点的坐标为_4、对称
12、点的特征:关于轴对称点的特点_不变,_互为相反数关于轴对称点的特点_不变,_互为相反数关于原点对称点的特点_、 _互为相反数点A关于轴对称点的坐标是_,关于原点对称的点坐标是_,关于轴对称点的坐标是_点M与点N关于原点对称,则5、平面直角坐标系中点的平移规律:左右移动点的_坐标变化,(向右移动_,向左移动_),上下移动点的_坐标变化(向上移动_,向下移动_)把点A向右平移两个单位,再向下平移三个单位得到的点坐标是_将点P先向_平移_单位,再向_平移_单位就可得到点6、平面直角坐标系中图形平移规律:图形中每一个点平移规律都相同:左右移动点的_坐标变化,(向右移动_,向左移动_),上下移动点的_坐
13、标变化(向上移动_,向下移动_)已知ABC中任意一点P经过平移后得到的对应点,原三角形三点坐标是A,B,C 问平移后三点坐标分别为_第七章复习题1电影票上“4排5号”,记作(4,5),则“5排4号”记作_2点(,)向右平移2个单位后的坐标是_3所有纵坐标为零的点都在_轴上4已知点在第二象限,且到轴的距离是,到轴的距离是,则点的坐标为_5如果,则点在第_象限点在第_象限6在矩形中,则点的坐标为_7如图1是具有多年历史的古城扬州市区内的几个旅游景点分布示意图(图中每个小正方形的边长均为个单位长度)(1)请以国家AAAA级(最高级)旅游景点瘦西湖为坐标原点,以水平向右为轴的正方向,以竖直向上为轴的正
14、方向用坐标表示下列景点的位置:荷花池_、平山堂_、汪氏小苑_;平山堂竹西公园瘦西湖荷花池汪氏小苑图(2)如果建立适当的直角坐标系(不以瘦西湖为坐标原点),例如:以_为原点,以水平向右为轴的正方向,以竖直向上为轴的正方向用坐标表示下列景点的位置:平山堂_、竹西公园_图28如图2,如果点A的位置为(,),那么点B,C,D,E的位置分别为_、_、_、_9、如图3是沈阳市地图简图的一部分,图中“故宫”、“鼓楼”所在的区域分别是()D7,E6D6,E7E7,D6E6,D7图46鼓楼大北门7故宫8大南门东华门10如图4,横坐标是正数,纵坐标是负数的点是()ABCD11在平面直角坐标系中,点(,)所在的象限
15、是()第一象限 第二象限 第三象限第四象限12已知点(,),(,),则A,B两点相距()3个单位长度 4个单位长度 5个单位长度6个单位长度13点P(,1)在第二象限内,则点Q(,0)在()轴正半轴上轴负半轴上轴正半轴上轴负半轴上14平面直角坐标系中,一个三角形的三个顶点的坐标,横坐标保持不变,纵坐标增加3个单位,则所得的图形与原图形相比()形状不变,大小扩大了3倍 形状不变,向右平移了3个单位形状不变,向上平移了3个单位 三角形被纵向拉伸为原来的3倍15利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下:根据具体问题确定适当的单位长度;建立平面直角坐标系;在坐标平面内画出各点其中顺
16、序正确的是()16下列说法错误的是()平行于轴的直线上的所有点的纵坐标相同 平行于轴的直线上的所有点的横坐标相同若点(,)在轴上,则 (,)与(,)表示两个不同的点17、已知A(,),B(,),且A,B两点所在直线平行于轴求,的值18、在直角坐标系中描出下列各组点,并将各组内的点用线段依次连结起来(1)(1,0)、(6,0)、(6,1)、(5,0)、(6,-1)、(6,0);(2)(2,0)、(5,3)、(4,0);(3)(2,0)、(5,-3)、(4,0)观察所得到的图形像什么?如果要将此图形向上平移到轴上方,那么至少要向上平移几个单位长度图519、如图5,在平面直角坐标系中,已知点(,),
17、B(,)(1)画出等腰三角形ABC(画一个即可);(2)写出(1)中画出的三角形ABC的顶点C的坐标第八章 二元一次方程组【知识回顾】第八章复习题1、若是关于字母、的二元一次方程,则若是关于字母、的二元一次方程,则若是关于字母、的二元一次方程,则2、若方程是关于字母、的二元一次方程,则 若是同类项的二元一次方程,则3、下列方程组中哪些是二元一次方程组? 4、在有理数范围内有_个解,在正整数范围内有_个解,在自然数范围内有_个解方程在自然数范围内的解为_写出二元一次方程的所有正整数解_5、是方程的解,则的值是_6、方程组的解、互为相反数,则的值是_7、若,则=_若,则8、二元一次方程组的解是,则
18、9、已知方程组的解的和是12,则 10、一个两位数,十位上的数字与个位上的数字之和是11,如果把十位上的数字与个位上的数字对调,得到的新数比原来大63,求这个两位数为_第九章不等式与不等式组【知识回顾】1、不等式的基本性质:并用字母表示 _ _ _ _要特别注意的是:_2、不等式的解集:_1、 不等式组的解集:_第九章复习题1已知ab,则下列不等式中不正确的是()4a4ba+4b+4 4a4ba4b42不等式的正整数解有()1个2个 3个 4个3满足1x2的数在数轴上表示为()A4如果x2=x2,那么x的取值范围是()x2x2 x25从甲地到乙地有16千米,某人以4千米/时8千米/时的速度由甲
19、地到乙地,则他用的时间大约为()1小时2小时 2小时3小时 3小时4小时 2小时4小时6不等式组的解集是()x1 x27不等式1.25m1.25 m1-m的解集为_17已知x3是方程2x1的解,那么不等式(2)x的解集是 18若不等式组的解集是x3,则m的取值范围是 19小明用100元钱购得笔记本和钢笔共30件,已知每本笔记本2元,每只钢笔5元.那么小明最多能买 只钢笔20某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打 21解不等式: 22解不等式组,并把它的解集表示在数轴上:23为何值时,代数式的值是非负数?24已
20、知:关于的方程的解是非正数,求的取值范围25北京奥运会期间,某旅行社组团去北京观看某场足球比赛,入住某宾馆已知该宾馆一楼房间比二楼房间少5间,该旅游团有48人,若全部安排在一楼,每间住4人,房间不够,每间住5人,有房间没住满若全部安排在二楼,每间住3人,房间不够,每间住4人,则有房间没住满你能根据以上信息确定宾馆一楼有多少房间吗?第10章数据的收集、整理与描述一、知识要点:1、全面调查:我们把对全体对象的调查称为全面调查.2、抽样调查:(1)从总体中抽取部分对象进行的调查叫抽样调查.(2)在统计中,需要考察对象的全体叫做总体,其中从总体中抽取的部分个体叫做总体的一个样本,样本中个体的数目叫做样
21、本容量。3、数据处理的基本过程:数据处理的基本过程:收集数据、整理数据、描述数据、分析数据、得出结论4、表示数据的两种基本方法:(1)统计表,通过表格可以找出数据分布的规律;(2)统计图,利用统计图表示经过整理的数据,能更直观地反映数据的规律.5、常见统计图:(1)条形统计图:能清楚地表示出每个项目的具体数目;(2)扇形统计图: 能清楚地表示出各部分与总量间的比重;(3)折线统计图: 能反映事物变化的规律.(4)频数分布直方图:能清楚显示各组频数分布情况。6、扇形统计图(1)扇形统计图:用圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫
22、扇形统计图。(2)制作扇形统计图的三个步骤:1计算各部分在总体中所占的百分比;2计算各个扇形的圆心角的度数360该部分占总体的百分比;3在圆中依次作出上面的扇形,并标出百分比。(3)扇形的面积与对应的圆心角的关系:扇形的面积越大,圆心角的度数越大。扇形的面积越小,圆心角的度数越小。7、频数分布直方图(1)频数:落在不同小组中的数据个数为该组的频数各组的频数之和等于这组数据的总数 注:在统计频数多少的时候,我们一般通过数“正”字的方法累计 (2)频率:频数与数据总数的比,即频率各组频率之和为1频率大小反映了各组频数在数据总数中所占的份量 (3)组数:把全体样本分成的组的个数称为组数 (4)组距:
23、把所有数据分成若干个组,每个小组的两个端点的距离。 8、列频数分布表的注意事项运用频数分布直方图进行数据分析的时候,一般先列出它的分布表,其中有几个常用的公式:各组频数之和等于抽样数据总数;各组频率之和等于1;数据总数各组的频率相应组的频数 画频数分布直方图的目的,是为了将频数分布表中的结果直观、形象地表示出来,其中组距、组数起关键作用,分组过少,数据就非常集中;分组过多,数据就非常分散,这就掩盖了分布的特征,当数据在100以内时,一般分612组 9、直方图的特点通过长方形的高代表对应组的频数与组距的比(因为比是一个常数,为了画图和看图方便,通常直接用高表示频数),这样的统计图称为频数分布直方
24、图 (1)特点:清楚显示各组频数分布情况;易于显示各组之间频数的差别 (2)制作频数分布直方图的步骤1找出所有数据中的最大值和最小值,并算出它们的差 2决定组距和组数 3确定分点 4列出频数分布表 5画频数分布直方图 10、频数分布折线图的制作我们可以在直方图的基础上来画,先取直方图各矩形上边的中点,然后在横轴上取两个频数为0的点,这两点分别与直方图左右两端的两个长方形的组中值(矩形宽的中点)相距一个组距,将这些点用线段依次联结起来,就得到了频数分布折线图 11、条形图和直方图的区别(1)条形图是用条形的高度表示频数的大小,而直方图实际上是用长方形的面积表示频数,当长方形的宽相等的时候,可以用
25、矩形的的高表示频数; (2)条形图中,横轴上的数据是孤立的,是一个具体的数据,而直方图中,横轴上的数据是连续的,是一个范围; (3)条形图中,各长方形之间有空隙,而直方图中,各长方形是靠在一起的; 第10章数据的收集、整理与描述复习1、七(1)班学生参加学校组织的“迎世博”知识竞赛,老师将学生的成绩按10分的组距分段,统计每个分数段出现的频数,填入频数分布表 七(1)班“迎世博”知识竞赛成绩频数分布表分数段49.559.559.569.569.579.579.589.589.599.5频 数a910145频 率0.05b0.2500.3500.125 (1)频数分布表中a ,b ;(2)学校设
26、定成绩在79.5分及以上的学生将获得一等奖或二等奖,一等奖奖励作业本10本及世博会吉祥物海宝3个,二等奖奖励作业本6本及海宝1个已知七(1)班学生共获得作业本158本,请求出七(1)班学生共获得海宝多少个?频数分数5060708090100802、某班将安全知识竞赛成绩整理后绘制成直方图,图中从左至右前四组的百分比分别是4,12,40,28,第五组的频数是8.则:该班有50名同学参赛;第五组的百分比为16;成绩在7080分的人数最多;80分以上的学生有14名,其中正确的个数有( )A.1个 B.2个 C.3个 D.4个3、如图,是某中学七年级学生参加课外活动人数的扇形统计图,若参加舞蹈类的学生
27、有42人,则参加球类活动的学生人数有( )A.145 B.149 C.147 D.1515元10元35%40%20元4、2008年汶川大地震发生后,某校学生积极为灾区捐款,如图为不同捐款金额数的人数占全校学生数的比例,已知该校有学生1500人,则该校共捐款 元.七年级32%八年级33%九年级35%各年级学生比率人均捐款数(元)年级七八九1013155、如图,根据某校学生为玉树地震灾区捐款的情况制作的统计图,已知该校学生数为1000人,由图可知该校学生共捐款 元.动画娱乐体育新闻节目人数1020304050娱乐20%动画体育40%新闻6、为了解学生对新闻、体育、动画、娱乐四类电视节目的喜爱情况,
28、某校随机调查了若干名学生,将调查的结果绘制成了如下两幅不完整的统计图.请根据图中提供的信息解答下列问题:(1)该校一共调查了多少名学生?(2)“新闻”在扇形图中所占的圆心角是多少度?(3)补全频数分布折线图.7、学习了统计的有关知识后,数学王老师对本班同学的上学方式进行了调查,并根据调查结果绘制了两幅不完整的统计图,请你根据图中提供的信息,解答下列问题: 该班共有_名学生,a = _,b = _ . 将条形统计图补充完整. 0.050.350.650.951.251.55204048频数视力0.350.650.650.950.951.251.251.550.35ab28%24%10%8、某校共
29、有1000名学生,为了了解他们的视力情况,随机抽查了部分学生的视力,并将调查的数据整理绘制成直方图和扇形图.(1)这次共调查了多少名学生?扇形图中的a、b值分别是多少?(2)补全频数分布直方图;(3)在光线较暗的环境下学习的学生占对应被调查学生的比例如下表:视力0.350.350.650.650.950.951.251.251.55比例 根据调查结果估计该校有多少学生在光线较暗的环境下学习?9、5月12日,四川省汶川县发生8.0级大地震. 某校学生会倡导“抗震救灾,众志成城”自愿捐款活动并进行了抽样调查,得到了一组学生捐款情况的数据.下图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为2:4:5:8:6.又知此次调查中捐款20元和25元的学生一共28人.510152025捐款数(元)人数(1)他们一共调查了多少人?(2)若该校共有2000名学生,估计全校学生大约捐款多少元?20