收藏 分销(赏)

微分中值定理赵树嫄.pptx

上传人:天**** 文档编号:4296327 上传时间:2024-09-04 格式:PPTX 页数:28 大小:599.08KB 下载积分:10 金币
下载 相关 举报
微分中值定理赵树嫄.pptx_第1页
第1页 / 共28页
微分中值定理赵树嫄.pptx_第2页
第2页 / 共28页


点击查看更多>>
资源描述
中值定理中值定理应用应用研究函数性质及曲线性态研究函数性质及曲线性态利用导数解决实际问题利用导数解决实际问题罗尔中值定理罗尔中值定理拉格朗日中值定理拉格朗日中值定理柯西中值定理柯西中值定理泰勒公式泰勒公式 (第三节第三节)推广推广一、罗尔定理一、罗尔定理二、拉格朗日中值定理二、拉格朗日中值定理 三、柯西中值定理三、柯西中值定理 第三章 问题的提出 我们知道,导数是刻划函数在一点处变化率的数学模型,它反映的是函数在一点处的局部变化性态,但在理论研究和实际应用中,常常需要把握函数在某区间上的整体变化性态,那么函数的整体变化性态与局部变化性态有何关系呢?中值定理正是对这一问题的理论诠释。中值定理揭示了函数在某区间上的整体性质与该区间内部某一点的导数之间的关系。中值定理既是利用微分学知识解决应用问题的数学模型,又是解决微分学自身发展的一种理论性数学模型。费马引理费马引理一、罗尔定理一、罗尔定理且 存在证证:设则证毕证毕几何解释几何解释:导数等于零的点称为函数的驻点(或稳定点、临界点)罗尔定理罗尔定理满足:(1)在闭区间 a,b 上连续(2)在开区间(a,b)内可导(3)f(a)=f(b)使证证:故在 a,b 上取得最大值 M 和最小值 m.若 M=m,则因此在(a,b)内至少存在一点若 M m,则 M 和 m 中至少有一个与端点值不等,不妨设 则至少存在一点使注意注意:1)定理条件条件不全具备,结论不一定成立.例如,则由费马引理得 使2)定理条件只是充分的.本定理可推广为在(a,b)内可导,且在(a,b)内至少存在一点证明提示证明提示:设证 F(x)在 a,b 上满足罗尔定理.例例1.证明方程有且仅有一个小于1的正实根.证证:1)存在性.则在 0,1 连续,且由零点定理知存在使即方程有小于 1 的正根2)唯一性.假设另有为端点的区间满足罗尔定理条件,至少存在一点但矛盾,故假设不真!设二、拉格朗日中值定理二、拉格朗日中值定理(1)在闭区间 a,b 上连续满足:(2)在开区间(a,b)内可导至少存在一点使思路思路:利用逆向思维逆向思维找出一个满足罗尔定理条件的函数作辅助函数显然,在 a,b 上连续,在(a,b)内可导,且证证:问题转化为证由罗尔定理知至少存在一点即定理结论成立.证毕证毕几何解释几何解释:在曲线弧在曲线弧AB上至少有一点上至少有一点,在该点处的在该点处的 切线平行于弦切线平行于弦AB拉格朗日中值定理的有限增量形式:推论推论:若函数在区间 I 上满足则在 I 上必为常数.证证:在 I 上任取两点格朗日中值公式,得由 的任意性知,在 I 上为常数.令则例例2.证明等式证证:设由推论可知 (常数)令 x=0,得又故所证等式在定义域 上成立.自证自证:经验经验:欲证时只需证在 I 上例例3.证明不等式证证:设中值定理条件,即因为故因此应有三、柯西中值定理三、柯西中值定理分析分析:及(1)在闭区间 a,b 上连续(2)在开区间(a,b)内可导(3)在开区间(a,b)内至少存在一点使满足:要证证证:作辅助函数且使即由罗尔定理知,至少存在一点思考思考:柯西定理的下述证法对吗?两个 不一定相同错错!上面两式相比即得结论.柯西定理的几何意义柯西定理的几何意义:注意:弦的斜率切线斜率例例4.设至少存在一点使证证:结论可变形为设则在 0,1 上满足柯西中值定理条件,因此在(0,1)内至少存在一点 ,使即证明例例5.试证至少存在一点使证证:法法1 用柯西中值定理.则 f(x),F(x)在 1,e 上满足柯西中值定理条件,令因此 即分析分析:例例5.试证至少存在一点使法法2 令则 f(x)在 1,e 上满足罗尔中值定理条件,使因此存在内容小结内容小结1.微分中值定理的条件、结论及关系罗尔定理拉格朗日中值定理柯西中值定理2.微分中值定理的应用(1)证明恒等式(2)证明不等式(3)证明有关中值问题的结论关键关键:利用逆向思维设辅助函数费马引理思考与练习思考与练习1.填空题填空题1)函数在区间 1,2 上满足拉格朗日定理条件,则中值2)设有个根,它们分别在区间上.方程2.设且在内可导,证明至少存在一点使提示提示:由结论可知,只需证即验证在上满足罗尔定理条件.设3.若可导,试证在其两个零点间一定有的零点.提示提示:设欲证:使只要证亦即作辅助函数验证在上满足罗尔定理条件.4.思考:在即当时问问是否可由此得出 不能不能!因为是依赖于 x 的一个特殊的函数.因此由上式得表示 x 从右侧以任意方式趋于 0.应用拉格朗日中值定理得上对函数作业作业P132 7,8,10,12,14,15提示提示:题15.题14.考虑柯西柯西(1789 1857)法国数学家,他对数学的贡献主要集中在微积分学,柯 西全集共有 27 卷.其中最重要的的是为巴黎综合学 校编写的分析教程,无穷小分析概论,微积分在几何上的应用 等,有思想有创建,响广泛而深远.对数学的影他是经典分析的奠人之一,他为微积分所奠定的基础推动了分析的发展.复变函数和微分方程方面.一生发表论文800余篇,著书 7 本,
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服