收藏 分销(赏)

汽车制动系统毕业设计.doc

上传人:人****来 文档编号:4291971 上传时间:2024-09-04 格式:DOC 页数:20 大小:642KB 下载积分:10 金币
下载 相关 举报
汽车制动系统毕业设计.doc_第1页
第1页 / 共20页
汽车制动系统毕业设计.doc_第2页
第2页 / 共20页


点击查看更多>>
资源描述
综合以上优缺点最终确定本次设计采用前后盘式制动器,且均为浮钳盘式制动器。 液压式的简单制动系统通常称为液压制动系,用于行车制动装置。其优点是作用滞后时间短(0.1-0.3s),工作压力大(可达10MPa-12MPa),缸径尺寸小,可布置在制动器内部作为制动蹄的张开机构或制动块的压紧机构,使之结构简单、紧凑、质量小、造价低。但其有限的力传动比限制了它在汽车上的适用范围。 11 中国农业大学学士论文 第3章 制动系统设计计算 第3章 制动系统设计计算 3.1 制动系统主要参数数值 3.1.1 相关主要参数 1.汽车相关主要参数如表3.1所示。 表3.1 汽车相关主要参数 编号 名称 符号 数值 单位 备注 1 质量 M0 320.000 kg 2 重力 G 3136.000 N 3 质心高 hg 300.000 mm 11.82 inch 4 轴距 L 1600.000 mm 63.04 inch 5 质心至前轴的距离 a 848.000 mm 33.41 inch 6 质心至后轴的距离 b 752.000 mm 29.63 inch 7 前轴负荷 Wf 1473.920 N 47.00 % 8 后轴负荷 Wr 1662.080 N 53.00 % 2.2010年FSAE赞助轮胎相关参数如表3.2所示。 表3.2 2010年FSAE赞助轮胎相关参数 规格 180/530R13 标准轮辋内距 8 轮胎胎面宽(mm inch) 223 8.8 轮胎外径(mm inch) 533 21.0 轮胎接地面宽(mm inch) 185 7.3 轮胎半径(mm) 244 轮胎周长 1626 轮辋内距 7.5-8.5 12 3.1.2 同步附着系数的分析 (1) 当时:制动时总是前轮先抱死,这是一种稳定工况,但丧失了转向能力; (2)当时:制动时总是后轮先抱死,这是容易发生后轴策划而使汽车丧失方向稳定性; (3)当时:制动时汽车前后轮同时抱死,是一种稳定工况,但也丧失了转向能力。 分析表明,汽车在同步系数为的路面上制动(前后轮同时抱死)时,其制动减速度为,即q=,q为制动强度。而在其他附着系数的路面上制动时,达到前轮或者后轮即将抱死的制动强度q<,这表明只有在的路面上,地面的附着条件才可以得到充分利用。 根据相关资料查出赛车=0.7,故取=0.7。 3.1.3 地面对前、后轮的法向反作用力 若在不同附着系数的路面上,前、后轮同时抱死(不论是同时抱死或分别先后抱死),此时或。地面作用于前、后轮的法向反作用力为 (3-1) (3-2) 前后轮同时抱死制动时地面对前、后轮法向反作用力的变化如表3.3所示 表3.3 前后轮同时抱死地面对前、后轮法向反作用力的变化 φ 0 1474 1662 47% 53% 0.1 1533 1603 49% 51% 0.2 1592 1544 51% 49% 0.3 1650 1486 53% 47% 0.4 1709 1427 55% 46% 0.5 1768 1368 56% 44% 0.6 1827 1309 58% 42% 0.7 1886 1250 60% 40% 0.8 1944 1192 62% 38% 0.9 2003 1133 64% 36% 1.0 2062 1074 66% 34% 13 3.2 制动器有关计算 3.2.1 确定前后制动力矩分配系数 根据公式: (3-3) 得到: (3-4) 3.2.2 制动器制动力矩的确定 应急制动时,假定前后轮同时抱死拖滑,此时所需的前桥制动力矩为 (3-5) 式中,G为赛车重力;L为轴距;a为汽车质心到前轴的距离;为汽车质心的高度;为附着系数;为轮胎有效半径。 当==0.7时, 即 因为== (3-6) 所以 3.2.3 盘式制动器主要参数确定 1)制动盘直径D 制动盘直径D应尽可能取大些,这时制动盘的有效半径得到增加,可以降低制动钳的夹紧力,减少衬块的单位压力和工作温度。受轮辋直径的限制,制动盘的直径通常选择为轮辋直径的70%一79%。总质量大于2t的汽车应取上限。 这里去制动盘的直径D为轮辋直径的百分之70%,即mm 2)制动盘厚度的选择 14 制动盘厚度对制动盘质量和工作时的温升有影响。为使质量小些,制动盘厚度不宜取得大;为了降低温度,制动盘厚度又不宜取得过小。制动盘可以做成实心的,或者为了散热通风的需要在制动盘中间铸出通风孔道。一般实心制动盘厚度可取为10~20mm,通风式制动盘厚度取为20~50mm,采用较多的是20~30mm。在高速运动下紧急制动, 制动盘会形成热变形, 产生颤抖。为提高制动盘摩擦面的散热性能, 大多把制动盘做成中间空洞的通风式制动盘, 这样可使制动盘温度降低20 %~30 %。这里制动器采用实心制动盘设计,mm厚度 。 3)摩擦衬块内半径R1和外半径R2 摩擦衬块(如图3-1所示)是指钳夹活塞推动挤压在制动盘上的摩擦材料。摩擦衬块分为摩擦材料和底板,两者直接压嵌在一起。摩擦衬块外半径只与内半径及推荐摩擦衬块外半径与内半径的比值不大于1.5。若此比值偏大,工作时衬块的外缘与内侧圆周速度相差较多,磨损不均匀,接触面积减少,最终导致制动力矩变化大。因为制动器直径D等于231mm,则摩擦块mm取,所以mm。 图3-1 摩擦衬块 4)摩擦衬块工作面积 对于盘式制动器衬块工作面积A,推荐根据制动衬块单位面积占有的汽车质量在范围内选用。单个前轮摩擦块,则单个前轮制动器A=48;单个后轮摩擦块,则单个后轮制动器A=32.能够满足β的要求。 5)摩擦衬块摩擦系数f 选择摩擦片时不仅希望其摩擦系数要高些,更要求其热稳定性要好,受温度和压力的影响要小。不能单纯地追求摩擦材料的高摩擦系数,应提高对摩擦系数的稳定性和降低制动器对摩擦系数偏离正常值的敏感性的要求,后者对蹄式制动器是非常重要的。各种制动器用擦材料的摩擦系数的稳定值约为 0.3~0.5,少数可达0.7。一般说来,摩擦系数愈高的材料,其耐磨性愈 15 差。所以在制动器设计时并非一定要追求高摩擦系数的材料。当前国产的制动摩擦片材料在温度低于 250℃时,保持摩擦系数=0.35~0.40 已无大问题。因此,在假设的理想条件下计算制动器的制动力矩。另外,在选择摩擦材料时应尽量采用减少污染和对人体无害的材料。所选择摩擦系数=0.35。 总结得到参数如表3.4所示 表3.4 制动器基本参数 制动盘外径/mm 工作半径/mm 制动盘厚度/mm 摩擦衬块厚度/mm 摩擦面积 前轮 231 96 10 9 48 后轮 231 96 10 9 32 3.2.4 盘式制动器的制动力计算 假定衬块的摩擦表面全部与制动盘接触,且各处单位压力分布均匀,则制动器的制动力矩为 (3-7) 式中,为摩擦因数;为单侧制动块对制动盘的压紧力;R为作用半径。 对于常见的具有扇形摩擦表面的衬块,若其径向宽度不很大,则R等于平均半径或有效半径,在实际中已经足够精确。 平均半径为 mm 式中,和为摩擦衬块扇形表面的内半径和外半径。 有效半径是扇形表面的面积中心至制动盘中心的距离,如下式所示(推导见离合器设计) (3-8) 式中,. 因为,,故,越小,则两者差值越大。 应当指出,若过小,即扇形的径向宽度过大,衬块摩擦面上各不同半径处得滑磨速度相差太远,磨损不均匀,因为单位压力分布均匀这一假设条件不能成立,则上述计算方法也就不适用。值一般不应小于0.65. 假定衬块的摩擦表面全部与制动盘接触,且各处单位压力分布均匀,则制动器的制动力矩 16 为 (3-9) 式中,为摩擦因数;为单侧制动块对制动盘的压紧力;R为作用半径。 对于常见的具有扇形摩擦表面的衬块,若其径向宽度不很大,则R等于平均半径或有效半径,在实际中已经足够精确。 平均半径为 (3-10) 式中,和为摩擦衬块扇形表面的内半径和外半径。 对于前制动器 (3-11) 所以 对于后制动器 (3-12) 所以 3.3 制动器主要零部件的结构设计 1)制动盘 制动盘一般用珠光体灰铸铁制成,或用添加Cr或Ni等合金铸铁制成。制动盘在工作时不仅承受着制动块作用的法向力和切向力,而且承受着热负荷。为了改善冷却效果,钳盘式制动器的制动盘有的铸成中间有径向通风槽的双层盘这样可大大地增加散热面积,降低温升约20-30%,但盘得整体厚度较厚。而一般不带通风盘的汽车制动盘,其厚度约在10-13mm之间。本次设计采用的材料为HT250。 . 2)制动钳 制动钳由可锻铸铁KTH370-12或球墨铸铁QT400-18制造,也有用轻合金制造的,例如用铝合金压铸。 3)制动块 制动块由背板和摩擦衬快组成,两者直接牢固地压嵌或铆接或粘结在一起。 4)摩擦材料 制动摩擦材料应具有稳定的摩擦系数,抗热衰退性要好,不应在温升到某一数值以后摩擦系数突然急剧下降,材料应有好的耐磨性,低的吸水(油、制动液)率,低的压缩率、低的热 17 传导率和低的热膨胀率,高的抗压、抗剪切、抗弯曲性能和耐冲击性能,制动时应不产生噪声、不产生不良气味、应尽量采用污染小对人体无害的摩擦材料。当前,制动器广泛采用模压材料。 5)制动轮缸 制动轮缸采用单活塞式制动轮缸,其在制动器中布置方便。轮缸的缸体由灰铸铁HT250制成。其缸简为通孔,需镗磨。活塞由铝合金制造。活塞外端压有钢制的开槽顶快,以支承插槽中的制动蹄,极端部或端部接头。轮缸的工作腔由装在活塞上的橡胶密封圈或靠在活塞内端面处得橡胶皮碗密封。本次设计采用的是HT250. 18 中国农业大学学士论文 第4章 液压制动驱动机构的设计计算 第4章 液压制动驱动机构的设计计算 4.1 前轮制动轮缸直径的确定 制动轮缸对制动块施加的张开力与轮缸直径和制动管路压力的关系为 (4-1) 制动管路压力一般不超过10~12。取。 (4-2) 轮缸直径应在标准规定的尺寸系列中选取(HG2865-1997),具体为19mm、22mm、24mm、25mm、28mm、30mm、32mm、35mm、38mm、40mm、45mm、50mm、55mm。因此取前轮制动轮缸直径为32mm. 同理,后轮制动轮缸直径。因此取后轮制动轮缸直径为25mm. 4.2 制动主缸直径的确定 第个轮缸的工作容积为: (4-3) 式中,为第个轮缸活塞的直径;为轮缸中活塞的数目;为第个轮缸活塞在完全制动时的行程,初步设计时,对鼓式制动器可取2.0-2.5mm.此处取mm. 所以一个前轮轮缸的工作容积为 一个后轮轮缸的工作容积为 所有轮缸的总工作容积为,式中,为轮缸数目。制动主缸应有的工作容积为,式中为制动软管的变形容积。在初步设计时,制动主缸的工作容积可为:对于乘用车;对于商用车。此处取。 19 所以 (4-4) 主缸活塞行程和活塞直径为 (4-5) 一般=(0.8~1.2)。此处取=。 所以 (4-6) 主缸的直径应符合QC/T311-1999中规定的尺寸系列,具体为19mm、22mm、28mm、32mm、35mm、38mm、40mm、45mm。所以取得mm。 4.3 制动踏板力和制动踏板工作行程 制动踏板力为: (4-7) 式中,为制动主缸活塞直径;p为制动管路的液压;为探班机构的传动比;为踏板机构及液压主缸的机械效率,可取=0.82~0.86.此处取=4,=0.85. 制动踏板力应满足以下要求;最大踏板力一般为500N(乘用车)或700N(商用车)。设计时,制动踏板力可在200N~350N的范围内选取。 所以 符合设计要求。 制动踏板工作行程为 (4-8) 式中,为主缸中推杆与活塞间的间隙,一般取1.5mm~2mm;为主缸活塞空行程,主缸活塞由不工作时的极限位置到使其皮碗完全封堵主缸上的旁通孔所经过的行程。 制动器调整正常时的踏板工作行程,在只应占计及制动衬块的容许磨损量的踏板行程的40%~60%。 为了避免空气侵入制动管路,在计算制动主缸活塞回位弹簧时,应保证踏板放开后,制动管路中仍保持0.05~0.14的残余压力。 最大踏板行程,对乘用车应不大于100~150mm,对商用车不大于180mm。此外,作用在制动手柄上最大的力,对乘用车不大于400N,对商用车不大于600N。制动手柄最大 20 行程对乘用车不大于160mm,对商用车不大于220mm. 符合设计要求 21 中国农业大学学士论文 第5章 制动性能分析 第5章 制动性能分析 任何一套制动装置都是由制动器和制动驱动机构两部分组成。 汽车的制动性是指汽车在行驶中能利用外力强制地降低车速至停车或下长坡时能维持一定车速的能力。 5.1 制动性能评价指标 汽车的制动性主要由下列三方面来评价: 1) 制动效能,即制动距离与制动减速度。 2)制动效能的恒定性,即抗热衰退性能。 3)制动时汽车的方向稳定性,即制动时汽车不发生跑偏、侧滑以及失去转向能力的性能。 5.2 制动效能 制动效能是指在良好路面上,汽车以一定初速度制动到停车的制动距离或制动时汽车的减速度。制动效能是制动性能中最基本的评价指标。制动距离越小,制动减速度越大,汽车的制动效能就越好。 5.3 制动效能的恒定性 制动效能的恒定性主要指的是抗热衰退性能。汽车在高速行驶或下长坡连续制动时制动效能保持的程度。因为制动过程中实际上是把汽车行驶的动能通过制动器吸收转换为热能,所以制动器温度升高后能保持在冷态时的制动效能,已成为设计制动器时要考虑的一个重要问题。 5.4 制动时汽车方向的稳定性 制动时汽车的方向稳定性,常用制动时汽车给定路径行驶的能力来评价。若制动时发生跑偏、侧滑或失去转向能力。则汽车将偏离原来的路径。 制动过程中汽车维持直线行驶,或按预定弯道行驶的能力,称为方向稳定性。影响方向稳定性包括制动跑偏、后轴侧滑或前轮失去转向能力三种情况。制动时发生跑偏、侧滑或失去转向能力时,汽车将偏离给定的行驶路径。因此,常用制动时汽车按给定路 22 径行驶的能力来评价汽车制动时的方向稳定性,对制动距离和制动减速度两指标测试时都要求了其实验通道的宽度。 方向稳定性是从制动跑偏、侧滑以及失去转向能力方面来考验。 制动跑偏的原因有两个: 1) 汽车左右车轮,特别是转向轴左右车轮制动器制动力不相等。 2) 制动时悬架导向杆系与转向系拉杆在运动学上不协调(相互干涉)。 前者是由于制动调整误差造成的,是非系统的。而后者是属于系统性误差。侧滑是指汽车制动时某一轴的车轮或两轴的车轮发生横向滑动的现象。最危险的情况时高速制动时后轴发生侧滑。防止后轴发生侧滑应使前后轴同时抱死或前轴先报死后轴始终不抱死。 理论分析如下,真正的评价需要靠实验。 5.5 制动器制动力分配曲线分析 对于一般汽车而言,根据其前后轴制动力的分配、载荷情况及路面附着系数和坡度等因素,当制动器制动力足够时,制动过程可能出现如下三种情况: 1) 前轮先抱死拖滑,然后后轮抱死拖滑。 2) 后轮先抱死拖滑,然后前轮抱死拖滑。 3) 前后轮同时抱死拖滑。 所以,前后轮制动力分配将影响汽车制动时的方向稳定性和附着条件利用程度,是设计汽车制动时必须妥善处理的问题。 根据给定参数和及制动力分配系数,应用EXCEL编制出制动力分配曲线如下: 1) 当I线与β线相交时,即=0.7时,即前后轮同时抱死。 2) 当I线在β线下方时,前轮先抱死。 3) 当I线在β线上方时,后轮先抱死。 通过图5-1可以看出相关参数和制动力分配系数的合理性。 23 中国农业大学学士论文 第5章 制动性能分析 图 5-1 赛车制动力分配曲线 5.6 制动减速度和制动距离S 制动系的制动效果,可以用最大制动减速度及最小制动距离来评价。 假设汽车是在水平的,坚硬的道路上行驶,并且不考虑路面附着条件,因此制动力是由制动器产生。此时 所以符合要求。 24 5.7 摩擦衬块的磨损特性计算 摩擦衬块的磨损受温度、摩擦力、滑磨速度、制动鼓(制动盘)的材质及加工情况,以及衬片本身材质等许多因素的影响,因此在理论上计算磨损性能极为困难。但试验表明,影响磨损的最重要的因素还是摩擦表面的温度和摩擦力。 从能量的观点来说,汽车制动过程即是将汽车的机械能(动能和势能)的一部分转变为热能而耗散的过程。在制动强度很大的紧急制动过程中,制动器几乎承担了汽车全部动能耗散的任务。此时,由于制动时间很短,实际上热能还来不及逸散到大气中就被制动器所吸收,致使制动器温度升高。这就是所谓制动器的能量负荷。能量负荷越大,则衬片(衬块)的磨损越严重。对于盘式制动器的衬块,其单位面积上的能量负荷比鼓式制动器衬片大许多倍,所以制动盘的表面温度比制动鼓的高。 各种汽车的总质量及其制动衬块的摩擦面积各不相同,因而有必要用一种相对的量作为评价能量负荷的指标。目前,各国常用的指标是比能量消散率,即单位时间内衬块单位摩擦面积耗散的能量,通常所用的计量单位为。比能量耗散率有时也称为单位功负荷,或简称能量负荷。 双轴汽车的单个前轮及后轮制动器的比能量耗散率分别为 (5-1) (5-2) (5-3) 式中,为汽车总质量;为汽车回转质量换算系数;、为制动初速度和终速度();为制动减速度();t为制动时间;、为前、后制动衬片(衬块)的摩擦面积;为制动力分配系数。 在紧急制动到停车的情况下,,并可认为,故 (5-4) (5-5) 据有关文献推荐,鼓式制动器的比能量耗散率比不大于为宜,计算时取减速度。制动初速度:乘用车用100km/h(27.8m/s);总质量3.5t以下的商用车用;总质量3.5t以上的商用车用65km/h(18m/s)。乘用车的盘式制动器在同上的和的条件下,比能量耗散率应不大于。对于最高车速低于以上规定的制动初速度的汽车,按上述条件算出的值允许略大于。比能量耗散率过高不仅引起衬片(衬块)的加速磨损,且又可能使制动鼓 25 或制动盘更早发生龟裂。 (5-6) (5-7) (5-8) 盘式制动器的比能量耗散率应不大于,故符合要求。 另一个磨损特性指标是衬片(衬块)单位摩擦面积的制动力摩擦力,称为比摩擦力。比摩擦力越大,则磨损越严重。单个车轮制动器的比摩擦力为 (5-9) 式中,为单个制动器的制动力矩;R为制动鼓半径(衬块平均半径或有效半径);A为单个制动器衬片(衬块)摩擦面积。 在时,鼓式制动器的比摩擦力以不大于为宜。与之相应的衬片与制动鼓之间的平均单位压力=1.37~1.60(设摩擦因素=0.3~0.35)。这比过去一些文献中推荐的要小,因为磨损问题现在已较过去受到更大程度的重视。 符合要求。 26 中国农业大学学士论文 参考文献 参考文献 [1]陈家瑞,马天飞. 汽车构造(下册)第五版. 北京:人民交通出版社, 2005 [2]余志生.汽车理论(第5版).北京:机械工业出版社,2009 [3]王望予.汽车设计.北京:机械工业出版社,2006 [4]王国权.汽车设计课程设计指导书.北京:机械工业出版社,2010 [5]刘涛.汽车设计.北京:北京大学出版社,2008 [6]韩守身.微型轿车的使用与构造图册.北京:人民邮电出版社,1996 [7]张新智.北京吉普切诺基汽车结构图册.北京:机械工业出版社,1994 [8] 过学迅.汽车设计.北京:人民交通出版社,2005 [9] 刘惟信.汽车设计.北京:清华大学出版社,2001 [10] 杨可桢.机械设计.北京,机械工业出版社,2003 [11] 孟少农.汽车设计方法论.北京:机械工业出版社,1992 [12] 周开勤.机械零件手册.北京:高等教育出版社,2001 [13] 林玉祥.《机械工程图学习题集》. 北京:科学出版社,2008 [14] 张春林.《机械原理》.北京:高等教育出版社,2005 [15]何铭新 钱可强.《机械制图》.高等教育出版社 2004 27 中国农业大学学士论文 致谢 致 谢 转眼间就到了毕业答辩的时间,回想起做毕业设计的日子,虽然过程很枯燥乏味,但是每当有进展的时候,都会特别有成就感,心里都会偷偷地发笑。 当然毕业设计的顺利完成免不了张红老师的功劳。在课题开始之时,在我没有方向感和困惑的时候,是张红老师的告诉我一步一步去做、去想,你就会慢慢知道你接下来要做什么。在设计之中,我也碰到许多的困难和疑惑,是张红老师的指点迷津,让我恍然大悟。在这里我想对您说声:谢谢! 感谢实验室的张心娣老师,刚开始得时候我对制动器的结构和原理还是很清楚,特意跑来向您请教,您亲自带我去实验室参观,给我讲解其结构和工作原理,对我的画图工作起到了很大的作用。 感谢负责我们答辩的几位专业课老师,因为有了你们所教授的专业知识,我们才能够学以致用。你们是严格的,但正是因为这样的严格才能培养出优秀的毕业生。 感谢一起奋斗的同学们,因为有了大家的共同奋斗和勉励,才有了毕业设计的顺利完成,希望各位都能顺利通过毕业答辩,以一颗积极的心态来迎接未来的挑战。 28 中国农业大学学士论文 附录 附录 29
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 学术论文 > 毕业论文/毕业设计

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服