1、 教学 目标 1了解绝对值的概念,会求有理数的绝对值; 2会利用绝对值比较两个负数的大小; 3在绝对值概念形成过程中,渗透数形结合等思想方法,并注意培养学生的思维能力 教学 建议 一、重点、难点分析 绝对值概念既是本节的 教学 重点又是 教学 难点。关于绝对值的概念,需要明确的是无论是绝对值的几何定义,还是绝对值的代数定义,都揭示了绝对值的一个重要性质?非负性,也就是说,任何一个有理数的绝对值都是非负数,即无论a取任意有理数,都有 。 教材上绝对值的定义是从几何角度给出的,也就是从数轴上表示数的点在数轴上的位置出发,得到的定义。这样,数轴的概念、画法、利用数轴比较有理数的大小、相反数,以及绝对
2、值,通过数轴,这些知识都联系在一起了。此外,0的绝对值是0,从几何定义出发,就十分容易理解了。 二、知识结构 绝对值的定义 绝对值的表示方法 用绝对值比较有理数的大小 三、教法建议 用语言叙述绝对值的定义,用解析式的形式给出绝对值的定义,或利用数轴定义绝对值,从理论上讲都是可以的初学绝对值用语言叙述的定义,好像更便于学生记忆和运用,以后逐步改用解析式表示绝对值的定义,即 在 教学 中,只能突出一种定义,否则容易引起混乱可以把利用数轴给出的定义作为绝对值的一种直观解释 此外,要反复提醒学生:一个有理数的绝对值不能是负数,但不能说一定是正数“非负数”的概念视学生的情况,逐步渗透,逐步提出 四、有关
3、绝对值的一些内容 1绝对值的代数定义 一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零 2绝对值的几何定义 在数轴上表示一个数的点离开原点的距离,叫做这个数的绝对值 3绝对值的主要性质 (2)一个实数的绝对值是一个非负数,即|a|0,因此,在实数范围内,绝对值最小的数是零 (4)两个相反数的绝对值相等 五、运用绝对值比较有理数的大小 1两个负数大小的比较,因为两个负数在数轴上的位置关系是:绝对值较大的负数一定在绝对值较小的负数左边,所以,两个负数,绝对值大的反而小. 比较两个负数的方法步骤是: (1)先分别求出两个负数的绝对值; (2)比较这两个绝对值的大小; (3)根据“两个负数,绝对值大的反而小”作出正确的判断 2两个正数大小的比较,与 小学 学习的方法一致,绝对值大的较大 第 1 2 3 4 页