收藏 分销(赏)

5G网络AI应用典型场景技术解决方案白皮书.pdf

上传人:宇*** 文档编号:4215477 上传时间:2024-08-26 格式:PDF 页数:41 大小:2.23MB 下载积分:25 金币
下载 相关 举报
5G网络AI应用典型场景技术解决方案白皮书.pdf_第1页
第1页 / 共41页
5G网络AI应用典型场景技术解决方案白皮书.pdf_第2页
第2页 / 共41页


点击查看更多>>
资源描述
5G 网络 AI 应用典型场景技术解决方案白皮书中国移动通信集团有限公司2024 年 6 月新一轮科技革命和产业变革深入发展,信息和能量融合创新纵深推进,数据、算力、AI 共同构成新质生产力的重要驱动因素。随着业务应用及场景的多样化发展,5G 通信技术面临信道模型更复杂、数据处理更庞杂、网络需求差异大、跨域融合要求高等挑战。AI 技术具备的海量数据分析能力、复杂任务处理能力、灵活适配能力、智能决策能力,可以有效增强 5G 网络能力。中国移动提出“5G 网络 AI 应用”技术方案,旨在将 5G 通信技术与 AI 应用相融合,构建“内生智能”的核心能力,解决 5G 网络发展的重大挑战,实现网络提质增效,推动网络向以智为先方向演进,目前已在基于业务的体验升级、智能网络优化、智能网络节能、5G+AI 用户画像、基于客户及特定场景的资源保障等方向进行重点布局,后续将驱动“+AI”向“AI+”跨越式发展,推动 5G 网络与 AI技术双向赋能,助力经济社会数智化转型。本白皮书由中国移动计划建设部委托中国移动研究院编制,联合华为、中兴、中信科移动、爱立信、诺基亚、高通、MTK、小米等公司共同撰写。本白皮书版权归中国移动所有,未经授权,任何单位或个人不得复制或拷贝本建议之部分或全部内容。中国移动5G 网络 AI 应用典型场景技术解决方案白皮书(2024)目目录录1.5G 网络 AI 应用简介.11.1 发展背景.11.2 技术挑战.11.3 技术原理.21.4 发展规划.52.5G 网络 AI 应用高价值场景及解决方案.62.1 无线网络 AI 应用.62.1.1 无线网络 AI 应用技术架构.62.1.2 基于业务的体验升级场景.72.1.3 智能网络优化场景.112.1.4 智能网络节能场景.202.2 核心网智能控制面 AI 应用.222.2.1 核心网智能控制面 AI 应用技术架构.222.2.2 基于业务的体验升级场景.232.2.3 5G+AI 用户画像场景.242.2.4 基于客户及特定场景的资源保障场景.263.5G 网络 AI 技术演进愿景.273.1 无线网络 AI 技术演进.283.2 核心网智能控制面 AI 演进.293.3 终端及芯片 AI 技术演进.314.总结与展望.33缩略语列表.35参考文献.36参编单位及人员.39中国移动5G 网络 AI 应用典型场景技术解决方案白皮书(2024)11.1.5G5G 网络网络 AIAI 应用简介应用简介1.1 发展背景发展背景随着移动网络应用新业务的多样化和蓬勃发展,从传统语音、数据、视频等业务到新兴裸眼 3D、XR 等业务的高速率低时延要求,以及行业应用对大上行、精准定位等的新质要求,运营商对用户业务质量的多样性保障提出了更高的期望。与此同时,AI 技术的快速发展,AI 在数据分析、模型构建、智能决策等领域的能力持续增强,也将会加速 5G+AI 的融合,发展趋势将智能化由外挂叠加变成智能内生一体。网络中的 AI 应用将泛化升级,由用例为中心走向智能化能力为中心,实现业务、体验和网络规建维优的全面升级。未来三年,全球 91%的运营商计划将网络智能化纳入其战略并持续投资,5G+AI 将加速运营商智能化。在过去不久的 2024 年世界通信大会上,很多电信运营商也展示了他们在移动网络智能化方面的实践,如德国电信 DeutscheTelekom、法国电信 Orange 等运营商展示了关键智能化网络 AI 应用,涉及运维和网络优化等方面,聚焦网管层面实现 AI 应用,旨在提高人工效率,进而提升网络性能。与此同时,作为技术领航者的国内外标准或行业组织,如 3GPP(3rdGeneration Partnership Project,第三代合作伙伴计划)、GTI(Global TD-LTEInitiative,TD-LTE 全球发展倡议)、TM Forum(TeleManagement Forum,电信管理论坛)、ETSI(European Telecommunications Standards Institute,欧洲电信标准化协会)、CCSA(China Communications Standards Association,中国通信标准化协会)等,都已经在各自负责的技术领域上启动了 AI 智能化的标准化工作,并且积极通过联合会议、联络函等形式进行了跨标准组织的技术分享。1.2 技术挑战技术挑战5G 及 5G-A 可提供更高的数据传输速率、更低的延迟、更广泛的连接、更强大可靠的性能以及更加极效智能的网络,满足日益增长的数字化需求,对网络提出新的技术挑战:1 1、信道模型更加复杂。、信道模型更加复杂。在网络覆盖到工业封闭园区、低空等特殊场景后,传统覆盖地面的信道需要延展到密集大型封闭空间、低空等,造成信道模型复杂度提升;中国移动5G 网络 AI 应用典型场景技术解决方案白皮书(2024)22 2、数据处理更庞杂。、数据处理更庞杂。除了传统的通信性能指标、基站及核心网数据等,还需持续引入业务体验数据、用户行为数据等,此外数据粒度也会从 15 分钟级统计细化到 1 分钟级,个别特殊场景到秒级数据,该变化会引来数据分析量成倍增加;3 3、网络需求差异大网络需求差异大。较之 4G 网络主要关注下行速率,5G 网络还需要关注时延、接入用户数、SLA 保障等多种网络要求,不同业务、场景对网络需求差异化大。4 4、跨域融合要求高。、跨域融合要求高。从传统通信方案只关注单域能力,伴随网络演进水平维度需要考虑网络、终端及业务的协同,垂直维度需要考虑感知能力、业务特征等因素与通信能力的匹配。基于以上挑战和发展趋势,引入 AI 技术,充分利用 AI 技术优势。在海量数据分析方面,AI 本身包含大量数据处理算法,从中提取有价值的信息和规律,提供决策支持和业务洞察。在智能决策方面,通过挖掘数据潜在关系并构建智能化模型,赋能网络在复杂和不确定的环境中做出更准确、更高效的决策。在算法模型方面,可以借助深度学习、强化学习、迁移学习等多种 AI 算法模型,实现不同任务类型的处理,如问题分类、时间序列预测等能力,以实现对复杂任务的学习和处理。1.3 技术原理技术原理通过分析网络场景化的问题,将网络问题转为数学问题,并有针对性的引入AI 技术,典型应用场景技术原理及价值如下:1 1、基于业务的体验升级、基于业务的体验升级无线侧将 AI 技术应用在移动网络中将有助于更精准地预测业务特征、用户行为、移动性、信道环境等信息,最终通过更智能的资源管理与调度机制达成更好的服务质量和用户体验,实现更好的公平性和系统资源利用率,既可以针对某一模块算法提升性能,也可以优化整个端到端通信系统,促进移动通信网络性能的进一步提升。中国移动5G 网络 AI 应用典型场景技术解决方案白皮书(2024)3图 1.3-1 基于业务的体验升级核心网侧通过构建基于 NWDAF(网络数据分析功能)的核心网网络智能化架构,可定制化感知用户业务体验及网络状态实时数据,开展智能综合分析,并反馈实时保障策略给 PCF(策略控制功能)从而建立专载智能保障,有效提升特定用户/业务的按需体验,实现体验升格。2 2、智能网络优化、智能网络优化当前运维系统中各个功能独立存在,人为编排组合系统功能需要进行多次交互,并且严重依赖于运维人员的技能,导致运维效率低,运维成本高。面向未来,借助 AI 技术,实现从以“功能”为中心到以“任务”为中心的运维模式转变,让系统去适应运维人员,为运维系统注入统一知识模型。运维人员通过自然语言与系统进行意图交互,系统能够根据人的意图,自动地编排组合使用功能来完成目标。此外通过 AI 技术,实现对网络资源差异化、精细化的编排,提高网络性能,实现通信资源合理化应用。图 1.3-2 智能网络优化中国移动5G 网络 AI 应用典型场景技术解决方案白皮书(2024)43 3、智能网络节能、智能网络节能利用 AI 技术可对网络业务进行深度学习,识别出对体验敏感的业务(如 VoNR语音通话及高清视频通话、实时游戏等)。基于业务识别结果,动态调整业务优先级,结合基于用户行为预测、网络负载预测等更多 AI 技术,可以提前为体验敏感业务预留足够的通信管道资源(如带宽、RB 等),防止节能措施引发的资源紧张对业务体验造成负面影响。同时,根据业务流量的时空分布特性,精确预测全时段内的网络负载和能耗需求,动态调整网络资源分配和节能策略,实现从闲时到忙时的平滑过渡。通过上述 AI 技术的实施,可以在移动网络实现体验与节能的高效协同,显著降低网络能耗,同时确保关键业务的优质体验不受影响。随着 AI 技术的不断发展和完善,网络的智能化节能将成为降低运营成本、实现绿色通信的重要手段。图 1.3-3 智能网络节能4 4、5G+AI5G+AI 用户画像用户画像利用 AI 技术,结合用户访问位置、业务流量等网络数据生成用户画像,实现个性服务推荐和用户行为预测。现阶段运营商的网络资源分配策略不足以满足用户多样化、个性化需求,存在响应速度慢、难以快速识别和处理潜在安全风险等问题问题。利用核心网智能控制面的 AI 能力,并通过 NWDAF(网络数据分析功能)对数据的实时采集,可以实时分析用户行为,生成精准用户画像,形成个性化网络资源分配策略,动态优化不同用户服务优先级,不断提高个性服务推荐的精准度,进而提升用户满意度。同时,用户行为异常检测、预测等 AI 能力能够实时分析和识别用户行为数据中的异常情况,预测潜在风险,为用户提供实时的安全预警和风险防护方案,保障用户安全。5 5、基于客户及特定场景的资源保障、基于客户及特定场景的资源保障高铁、景区、赛事等重点场景期间,用户会在相对集中地区,同一时间段同时使用网络,导致高流量冲击、资源分配不均等网络拥塞问题。利用 AI 技术可以精准预测流量需求,动态实时调度网络资源,实现重点场景高效保障。面向高中国移动5G 网络 AI 应用典型场景技术解决方案白皮书(2024)5铁、景区等固定地理位置的场景,当前网络主要面临用户流量集中、需求高峰显著、网络资源分配不均等问题,核心网智能控制面的 AI 能力通过历史数据分析和实时数据采集可以提供精准的流量预测、智能化的资源分配和优化、以及实时的网络状态监测与调整,从而保障固定场景下的网络服务质量。面向重大活动、赛事等灵活地理位置的场景,当前网络主要面临临时高流量冲击、网络部署时间紧迫、网络资源难以灵活调配等问题,核心网智能控制面的 AI 能力可以基于实时流量监测和历史数据分析,预测重大活动和赛事期间的流量需求,并提前调度网络资源,通过自动化的网络规划和部署工具,快速完成网络部署和优化、以及智能化的网络状态监测与调整,实现对灵活场景的高效保障。后章节会针对以上典型应用场景,关键技术及价值进行详细阐述。1.4 发展规划发展规划网络 AI 技术分两个大的分支,分别为 AI for Network 和 Network for AI。AI for Network 中 AI 用于满足移动网络新指标的关键路径,赋能网络并提升网络运行效率;另一方面 Network for AI 中移动网络是实现 AI 泛在普惠的基础平台,使能 AI 成为泛在化的社会级服务,即网络能提供什么能力服务于 AI。基于以上两个技术方向规划如下:2024 年至 2026 年重心仍聚焦 AI for Network 方向,针对移动网络 AI 下价值应用的持续研发。AI 价值应用场景主要包含:基于业务的体验升级、智能网络优化、智能网络节能、5G+AI 用户画像和基于客户及特定场景的资源保障,以上技术方向预期在 2025 年相对成熟,结合验证效果推动规模商用。2024 年会同步启动新技术与 AI 技术的结合,包含通感一体、低空经济、数字孪生、空口 AI等,如通过 AI 对低空飞行的目标进行更高精度识别,甚至判别为无人机或飞鸟。目前相关研究还处在理论研究阶段,预期 2025 年开展实验室验证。2025 年同步会启动 Network for AI 方面技术探索,随着 AI 可以应用到工业、教育、等更多领域和场景,并且 AI 技术的飞跃发展,AI 模型增大,运行空间增加,AI 对底层资源要求也与日俱增。在该背景下,技术方向下需要研究网络在算力、存储、数据、模型管理等多个领域能为 AI 提供的关键技术。此外,3GPP 标准也同步进行 AI 的相关研究。R18 标准基于分布式智能架构、新型分析机制、跨域智能协同、AI/ML 的网络节能、负荷均衡、以及移动性优化应用进行讨论;R19 聚焦业务质量智能决策、信令风暴预防、空口 AI 架构以及 CSI反馈、波束管理、精准定位等应用,同步实现核心网与无线网的数据分析收集和训练模型。中国移动5G 网络 AI 应用典型场景技术解决方案白皮书(2024)62.2.5G5G 网络网络 AIAI 应用高价值应用高价值场景及解决方案场景及解决方案2.1 无线网无线网 AI 应用应用为了迎接网络发展遇到的挑战,通过把 AI 应用能力融入无线网络业务发展、性能提升、网络优化运维和绿色节能等方面,实现智能化业务感知及保障、智能网络优化、智慧节能等能力,推动网络向以智为先方向演进。2.1.12.1.1 无线网无线网 AIAI 应用应用技术技术架构架构随着无线 AI 应用演进,国际国内通信标准组织也开展了积极的讨论,对无线网元以及网管的 AI 应用架构进行了定义,其中,无线 OMC 平台(Operation andMaintenance Center)负责无线单域内的网络智能,基站负责基站内的网元智能,整个网络通过分层处理来实现更高效的无线 AI 应用。图 2.1.1 无线 AI 应用技术架构基于上述技术架构,无线 AI 应用技术主要分为三个方面:典型应用场景:典型应用场景:科学合理实现通信与 AI 技术相结合,赋能网络新能力,进行智能业务实时保障,提升用户业务体验;在网络优化场景中,基于智能网络优化技术细耕网络,实现资源合理化使用;践行企业责任,基于智能化节能技术实现可持续发展,通过三个典型应用场景落实无线网络 AI 应用。两级两级 BBUBBU 架构:架构:网络智能化技术对基站算力提出了新的挑战,需要基站为中国移动5G 网络 AI 应用典型场景技术解决方案白皮书(2024)7AI 模型提供计算能力、存储能力等。通过在基站内部署新增算力,如新增智能融合板的方式,构建两级 BBU 部署架构,为无线网络 AI 应用提供硬件能力。接口能力开放接口能力开放:基站内 AI 应用会产生丰富的价值数据,如业务感知数据等,此类数据及能力与传统的无线性能数据区别较大,属于 AI 特有数据。基于OpenAPI 技术,实现网元的智能化能力标准化开放,提供细粒度数据及评估能力。向上为高层进阶的 AI 模块实现数据开放,向下让运营商一定程度实现与基站内AI 能力的协同。2.1.22.1.2 基于业务的体验升级基于业务的体验升级场景场景一、一、智能业务智能业务感知感知移动互联网的迅猛发展催生了多种业务形态,包括视频流媒体、在线游戏、社交媒体、电子商务等。在这一过程中,无线网元肩负着重要的责任,不仅需要确保整体网络的稳定性和可靠性,还要保障各类型业务的高质量体验。这对于网元的业务感知能力提出了更高的要求。智能业务感知技术是建设智能管道中较为重要的一环,基于业务感知结果对无线资源合理配置,使用户容量及业务感知能力最大化。智能业务感知技术方案通过基站 AI 算力自动进行传输数据采集,自动跟踪热门应用的数据传输特征变化,对热门应用的数据传输特征变化能迅速响应,从而确保了重点业务的高感知率。该技术保持对新业务持续追踪,并基于机器学习的数据传输特征感知系统,对海量经验数据进行智能分析,自动发现可能的数据传输特征,高效快速地构建特征库。业务指纹特征库在线的更新,无需断网就能完成系统特征库更新,并使用多种关键技术:1 1、特征自动提取:、特征自动提取:深度学习能够自动从原始数据中提取特征,而无需依赖人工设计特征。网络流量复杂多样,传统方法难以准确提取所有关键特征,尤其是现在加密业务占比越来越高,能够利用的明文特征越来越少。通过深度学习模型,系统可以从流量数据自动提取有效特征,提高感知的准确性和效率。2 2、注意力机制注意力机制:引入 AI 中神经网络算法,通过注意力机制,能够有效捕捉输入序列中不同位置间的依赖关系,这对于业务体验感知任务非常重要,因为流量模式和特征往往跨越较长的时间跨度和范围,注意力机制可以动态调整每个输入位置的关注点,实现对全局信息的综合分析。3 3、迁移学习、迁移学习:迁移学习通过将预训练模型应用于新的任务和数据集,可以大幅减少训练时间和计算资源。在业务体验感知中,迁移学习使 AI 模型能够在中国移动5G 网络 AI 应用典型场景技术解决方案白皮书(2024)8大规模公开数据集上进行预训练,然后在特定网络上进行微调,快速达到高准确率和高性能,这种方式不仅提高了模型在不同网络中适应性和鲁棒性,还显著减少了对大规模标注数据的依赖。4 4、在线监督:、在线监督:在线学习系统通过实时反馈机制,对模型的分类效果进行即时验证和校正。当模型对流量进行分类后,系统会根据实际情况对分类结果进行反馈。如果分类正确,模型参数得到正向强化,如果分类错误,模型会动态调整部分参数,以避免类似错误再次发生。这种基于反馈的更新方式,使模型能够持续学习和改进,逐步提高业务体验感知准确性。图 2.1.2-1 业务特征库的学习架构智能业务体验感知通过建设自动化采样系统,实现了原始样本的自动化采集和样本标注的自动化。目前智能业务体验感知模块支持数以万计业务种类感知,包括国内外各种主流业务类型,并精细化感知应用中的各项子业务,如语音通话、视频通话、直播、视频会议、云游戏等,感知准确率达到 95%以上。图 2.1.2-2 智能业务体验感知技术流程中国移动5G 网络 AI 应用典型场景技术解决方案白皮书(2024)9智能业务体验感知对于现代网络管理具有重要价值,主要体现在以下几个方面:1 1、优化用户体验优化用户体验。智能业务体验感知能够精确区分通话、视频流、语音流、游戏流等不同类型的流量。网元可以根据感知结果对相应的业务进行针对性优化和保障。例如,在高峰期优先保障视频通话和实时游戏流量,减少卡顿和延迟,极大地提升了用户的满意度和体验。2 2、保障网络安全。、保障网络安全。通过业务体验感知,可以快速检测异常流量和潜在的安全威胁。例如,识别出恶意流量、欺诈流量、网络攻击等风险,网元可以及时采取相应的防护措施,这不仅保护了用户的隐私和数据安全,也增强了网络的整体稳定性和可靠性。3 3、精细化业务和无线性能结合。、精细化业务和无线性能结合。智能业务体验感知为运营商提供了更为详尽的数据分析和洞察,帮助其更好地理解用户行为和需求。这些洞察可以用于开发新业务、优化现有服务和提高市场竞争力。二、二、智能业务保障智能业务保障5G 技术的推广和应用,使得网络不仅要满足更大的数据传输需求,还要满足不同行业和消费者对于服务质量(QoS)和服务可靠性(QoE)的高标准期望。而随着网络上新服务、新应用、新场景的不断出现,传统 5G 无线网络的保障方案越来越难以适应这些变化,因此无线智能化的在线业务体验感知,数据分析评估及智能化的精准保障就显得尤为重要。智能化精准业务保障技术的演进,可以形成一套 AI+自优化的无线网络关键评估指标 KPI 和关键质量指标 KQI 监控及优化的智能解决方案,通过对网络KPI/KQI 智能监控,及时有效地发现网络问题,进而通过分析网络配置、告警等多维度数据,找出导致网络质量异常的根因因素,再通过对参数调控、故障恢复等相关的优化手段,使得网络能够达到一个最佳的运行状态,精准提升高优先级用户的业务体验感知。精准业务保障方案通过预测技术和保障策略的结合,形成一套闭环体系:1 1、精准业务保障预测技术、精准业务保障预测技术智能服务层基于物理网络层的算力资源和数据资源,进行算力的建模和编排,以及数据的建模和治理,并基于多样化的算法模型进行智能化原子能力的编排,最终将算力、数据和算法以服务的形式向场景应用层开放。在数据维度上,通过标准化的数据采集流程,以及统一的数据模型进行数据采集、清洗、关联和标注,无线网络系统内可以生成并维护用户画像、基站画像等模型化数据。分布式的数据服务再结合领域知识和模型知识,可高效支撑 RAN中国移动5G 网络 AI 应用典型场景技术解决方案白皮书(2024)10内生智能的模型训练和推理。在算法维度上,基站侧部署的实时智能引擎可支持极轻量级模型训练和近实时模型推理,通过精准预测和主动优化来提升网络效能和用户体验;网管侧部署的轻量化智能引擎可支持轻量级模型训练和非实时模型推理,通过质量洞察、智能排障等能力实现高效主动的网络运维。此外,该架构还支持在独立智能平台部署。AI 应用服务层可将上述数据和算法原子能力以微服务的架构进行管理编排,并以 AI 服务(AI as a service,AIaaS)的形式向运营商开放,赋能场景应用层。运营商通过服务调用和低代码开发,可高效、低成本地将 AI 能力集成到自身的系统中,还可以实现灵活、按需的功能扩展以及资源弹缩。基于以上技术,在该场景应用中可以借助 AI 服务实现网络可视化、建模及仿真能力按需调用、多场景精准网规、网络策略和参数寻优、网络故障精准诊断、预测性维护等网络规建维优全流程的高度自动化和智能化,还可以按需进行新业务的开通预演和性能评估,以及新技术研究和低成本试错等。图 2.1.2-3 预测模型层级关系2 2、精准业务保障策略、精准业务保障策略精准业务保障是在智能业务体验感知的基础上启动对应保障策略。保障策略是通过自定义业务保障类型配置不同的调度优先层级,在不同层级队列配置不同的保障速率从而实现对业务的精准保障。为了确保无线网络能够提供优质的用户体验,根据不同业务特点,需要提出一套评估用户感知的体验指标体系。基于智能精细化业务体验感知,及业务体验量化评估,对于有调度时延和速率需求的业务类型,在业务感知之后进行业务保障,可以优化业务的调度时延和业务速率。中国移动5G 网络 AI 应用典型场景技术解决方案白皮书(2024)11图 2.1.2-4 精准业务保障方案如图 2.1.2-4 所示,业务体验感知后,根据业务的需求目标,如速率、时延等要求。并且根据当前业务目标的实际值、当前可调度的资源、调度策略约束,通过 AI 模型,实现多目标寻优,生成用户调度优先级以及保障速率配置等。同时根据调度后所产生的影响,如时延、速率等变化,将其反馈至基于 AI 的多目标寻优系统,再次完成多目标寻优,形成闭环。基于 AI 的多目标优化系统根据实际的业务保障需求,可以分别针对业务优先级类保障、时延类保障、速率类保障、移动分流类保障等不同类型选择合适的调度优先级和调度配置参数,提升保障用户体验。2.1.32.1.3 智能智能网络优化场景网络优化场景一、一、智慧重保诊断智慧重保诊断重大国际赛事、国际峰会、重要节假日等重大事件期间,终端用户会在相对集中地区,同一时间段同时使用网络,网络会承受比平时大几倍的业务量冲击。如此巨大的业务量冲击,很可能接近或超过为平常运营所设计的系统容量,导致网络运行下稳定发生突发问题,主要问题如下:1、保前传统大话务预测方法主要面向初期场馆建网规划阶段宏观预测使用,且依赖专家固化规则,缺乏包括终端渗透率、用户数峰均比、上下行业务占空比等关键数据。造成难以精准评估不同时间段不同小区负荷、用户体验。于此同时,基于专家经验固化的预案,效果不存在不确定性,费时费力。2、传统保障流程依赖工程师提取指标,筛选 TOP 异常小区,问题定界定因,再到闭环方案输出、执行时效性差,整个过程一般大于 45 分钟;尤其是性能异常与设备告警并存时,传统手段优先处理告警后再看性能是否恢复,未恢复再行空口问题定位,闭环问题约 60 分钟。无法满足保中问题快速发现和修复,进而中国移动5G 网络 AI 应用典型场景技术解决方案白皮书(2024)12降低问题影响的诉求。基于以上问题,将 AI 与重保场景结合,实现智慧重保。该 AI 应用在事前基于大话务风险仿真预测技术实现风险充分识别和预案准备,事后基于性能故障融合诊断技术准实时定界定因,以及方案智能生成:图 2.1.3-1 智慧重保调节业务架构1 1、大话务风险仿真预测技术:、大话务风险仿真预测技术:基于现网数据、历史数据和实验室数据相结合,构建用户时空维度的大话务预测模型。针对大话务场景有效数据获取难的问题,提出“基础+增量”分层框架实现。基础模型:基于多次大话务赛事数据进行解析清洗后,提取赛事前、中、后不同细分场景、不同时间切片上的话务分布特征、话务变化特征。提取业务模型、时序变化、指标预测等共性特征。图 2.1.3-2“基础+增量”分层框架2 2、性能故障融合诊断技术性能故障融合诊断技术:利用历史告警、性能 KPI、配置等数据,构建性能与告警影响统计模型;自动识别强、弱影响告警。针对强影响告警,采用告警发生时空口性能数据、告警数据基于神经网络注意力机制构建 KPI 与告警关联量化模型,准确识别告警影响。当出现性能异常事件,性能 KPI 属于时序连续数据、告警属于时序离散数据,传统基于时序相关性和因果算法无法匹配性能、告警异构数据量化分析要求,因此引入神经网络注意力机制技术实现性能与告警量化模型,准确评估告警对 KPI 的影响。中国移动5G 网络 AI 应用典型场景技术解决方案白皮书(2024)13图 2.1.3-3 网络异常的诊断结果智慧重保诊断可以精准预测网络风险和敏捷诊断故障,具有极高的应用价值:面向保障前,面向保障前,提供千站级规模的网络风险预测,可灵活设置仿真目标,智能识别网络风险隐患,辅助工程师精准定位网络问题,预防和消除网络潜在问题,实现网络加固。面向保障中,面向保障中,通过性能故障融合诊断、确保 1 分钟识别性能问题或设备故障,5 分钟解决突发问题,降低故障影响。二、二、深度谱效提升深度谱效提升未来随着云游戏、XR、元宇宙等实时交互类、云渲染类业务发展,业务的实时性将原来的秒级发展为 10 毫秒级,对于网络时延和带宽的确定性带来新的诉求,同时应用对于网络质量的实时感知挑战也会加大,因此需要网络提供一定时延、带宽的确定性以高效保障 E2E 业务的体验。从无线网络的频谱来看,频段越来越多,频段之间的差异也越来越大,从Sub-1G 到毫米波,速率可以相差百倍、覆盖可以相差十倍,定位精度和时延等能力差异也很大。网络谱效的持续提升,满足大带宽、低时延的业务发展至关重要,基于以上背景,引入 AI 技术旨在分场景提升谱效。1 1、多频场景的智能化协同技术、多频场景的智能化协同技术从用户视角看,需要满足随时随地一致性的体验。从网络视角看,一致性体验目标达成的关键在于如何进行一系列因素的测量、统计和计算。这些因素包括业务需求(上下行带宽、时延等)、频段类型(TDD/FDD/SUL/CA)、频段带宽、频段能效、终端能力,以及用户所处环境的覆盖、干扰、移动性等等。需要从多维度综合考虑多频资源的选择和组合,以达到整体的用户体验最优。中国移动5G 网络 AI 应用典型场景技术解决方案白皮书(2024)14图 2.1.3-4 智能化虚拟栅格智能化多频协同技术的关键价值在于提供多频段的空间预测能力,基于具有相同无线信号特性的终端上报 RSRP 信息特征作为输入,引用空口测量信息建立虚拟无线电环境特征库,并构建智能化虚拟栅格,基于该栅格可以快速预测出异频段的状态特征,从而计算出频段资源利用的最优解。在更优网络资源满足用户体验需求的同时,使得网络的整体谱效、能效最大化。2 2、多波束场景智能化协同技术、多波束场景智能化协同技术大规模 MIMO 相比普通 MIMO,可提供 35 倍容量、10 倍边缘体验能力,以及立体覆盖、节能等方面的优势。在大规模 MIMO 场景下,基于复杂的多维度因子实时计算的多用户 MIMO 调度策略,是决定小区整体容量和性能的关键。但多用户 MIMO 调度策略的计算过程复杂,包括用户配对关系选择、无线资源分配、无线链路选择(RANK/MCS)三个环节,且每个环节涉及多个因素,包括波束分布、终端分布、业务特征、链路质量、干扰相关性等。基于以上场景存在的问题,在选择 MU 调度策略时,不同维度调度量会影响MU 配对效果和小区整体性能。全流程的调度联合寻优能找到最优的组合,但复杂度很高。因此,需要基于智能化的方法进行实时的调度寻优,这对于硬件的算力也有较高的要求。基于硬件能力的准备度,MU 调度能力的实现,从单环节少数因子的寻优,逐步走向多环节多因子的联合寻优。图 2.1.3-5 多用户 MIMO 调度寻优利用多频、多波束、多站场景的 AI 协同技术,有以下价值:更加合理且高效利用基站频率资源,利用指纹库快速决策使用频率,达到最中国移动5G 网络 AI 应用典型场景技术解决方案白皮书(2024)15优体验。更加精确的波束调整,使得多用户 MIMO 配对比例增加,从而使得网络容量增加,谱效提升 3 到 5 倍,在不增加频谱的情况下实现多用户体验倍增。三、三、智能空分配对智能空分配对MU-MIMO,即 多 用 户 多 输 入 多 输 出(Multi-UserMultiple-InputMultiple-Output),是一种利用发射与接收端的多天线获取分集增益、充分利用空间资源,将多个终端的数据在相同频段收发,提升小区流量。传统 MU-MIMO 按照相关性计算遍历所有终端,计算复杂度高,遍历周期长,多用户空分配对性能受限。智能 MU-MIMO 是传统 MU-MIMO 的增强技术,引入了基于数据驱动的智能化模型包括基于用户的投影能量信息的空分配对模型、空分用户 MCS 智能适配模型。通过 AI 算法提升 MU-MIMO 的业务性能。基于用户的投影能量信息的空分配对模型,是基于投影能量信息提炼用户空间特征、计算用户间干扰度量,并用干扰度量来指导用户配对和空分用户间流间干扰的计算。同时,根据用户空间特征,将空分资源向信道质量好、角度扩展小的空分用户倾斜。智能智能 MU 功能启动功能启动用户空间特征用户空间特征用户间干扰度量用户间干扰度量智智能能 MU 模型初始化模型初始化化用户图像采集预处理用户图像采集预处理模型训练及修正模型训练及修正流间干扰折算流间干扰折算MU 用户用户 Target SE跟踪折算跟踪折算模型推理模型推理模型训练模块模型训练模块模型推理模块模型推理模块图 2.1.3-6 智能 MU-MIMO 模型空分用户 MCS(Modulation and Coding Scheme,调制与编码策略)智能适配模型,在线推理空分配对组发生变化后的干扰度量,能够为配对组内用户提供流间干扰折算,综合提升小区 MU-MIMO 性能。MCS 智能适配模型使用 CQI(Channel Quality Indication,信道质量指示)、空分 RI(rank indication,秩指示),空分配对的干扰度量信息,基于信道特中国移动5G 网络 AI 应用典型场景技术解决方案白皮书(2024)16征划分构建逻辑栅格。同时基于 AI 模型定位到终端在当前时隙下归属栅格。为空分配对组内的 MU 用户提供时隙级的 MCS 跟踪和修正,适配模型计算最优 MCS。相对传统 MU-MIMO 的配对 MCS 修正可以达到更加准确的 MCS 目标,快速收敛达到最佳频谱效率。四、四、移动性移动性 AIAI 增强增强在现代移动通信网络中,多频协同部署日益普及,通常情况下,为了保证最优的性能与体验,终端会在不同的频率之间进行切换,以获得最佳的驻留频率。频率切换需要进行频点测量,以获取信号强度数据作为参考,尤其是在覆盖较差的环境下,终端会对多个频率进行测量,甚至有些频率存在于距离终端很远的位置,多个频率测量会导致时延的增加,从而导致终端在弱覆盖场景下的时间延长;终端吞吐量的下降,也可能导致切换过晚,最终引起掉话。为了解决上述问题,采用 AI 技术建立基于频率覆盖的模型通过预测频率覆盖,并结合源/目标站点负荷情况,进行有目的的移动性控制切换。同时结合平台级的移动性管理优化的 AI 功能,定期对切换参数进行优化,从多维度保证用户的最佳体验。基于 AI/ML 的移动性增强功能,通过引入搜索区域创建 AI 模型,识别用于切换的候选频段来实现。模型使用监督学习算法,通过基于频率覆盖模型预测频率覆盖,再结合终端的测量信息来判断终端所处的位置,通过智能移动性管理模块,提取预测终端最有可能作为切换目标的频率,把终端的测量范围减少到该预测值,减少了终端的测量时间,增加测量的精准度,使得终端可以大大缩短在弱覆盖场景下的驻留时长。图 2.1.3-7 频率覆盖预测基于平台级的移动性管理优化功能,利用 AI 从不同小区的配置、环境、邻区等中学习。当一个小区的性能比可比的移动场景差时,AI 管理优化器会自动提出最佳的切换参数更新,重点是改善小区边缘的性能。将配置的优先级与预测覆盖,负载相结合起来,可以更好的选择切换目标频率,减少终端在弱覆盖场景停留的时长,提升用户体验和速率。与传统的切换方中国移动5G 网络 AI 应用典型场景技术解决方案白皮书(2024)17式相比,实验测试数据显示切换所需时间缩短 60%,提升用户的下行速率。五、五、极致告警压缩极致告警压缩在通信领域,智能运维面临着由网络设备故障、链路拥塞、服务质量下降等引发的高频、多源告警冲击。尤其在 5G、物联网等新兴技术驱动下,海量数据传输与复杂网络架构加剧了告警管理难度。极致告警压缩旨在通过有效压缩海量告警,提升故障定位与恢复效率,确保通信服务的稳定与质量。面对海量、异构的通信告警数据,如何在短时间内从大量告警中精准识别出关键信息,同时保持对突发、重大事件的高度敏感性,是技术落地的关键难题。针对以上问题,极致告警压缩引入 AI 技术中频繁项挖掘与时空关联分析能力予以解决。首先,运用基于频繁项挖掘算法和根告警识别算法,发现告警间的频繁模式和因果关系,构建关联规则库。其次,结合告警的时间戳与地理标签,利用时空数据分析方法揭示告警的时空分布特征、传播规律及潜在的区域性故障。再次,融合网络拓扑信息,运用图算法追踪故障根源,实现深层次的告警聚合与压缩。图 2.1.3-8 基于 AI 故障模式挖掘与故障识别基于 AI 的故障模式挖掘相比人工经验准确性高,海量网络数据训练+专家经验修正确保基础故障库精准。极致告警压缩技术显著减轻通信运维的信息负担,提高告警处理效率与准确性,冗余工单减少 70%,有助于预测未来故障趋势,驱动预防性维护与网络优化策略,增强通信企业的服务可靠性与客户满意度。六、六、小区性能监控小区性能监控小区性能监控是保障用户体验、优化网络布局和提高运营效率的关键环节。然而,传统的小区性能监控方式往往受限于人工巡检和每个指标固定阈值的告警触发机制,难以实现实时、精准地监控网络性能。当前小区性能统计指标众多、中国移动5G 网络 AI 应用典型场景技术解决方案白皮书(2024)18数据量巨大,使用传统的监控方式已经无法有效分析大量的性能数据,甚至可能导致关键信息的遗漏,从而无法精准有效地实现网络的管理和调整。为了解决上述问题,在小区性能监控中引入 AI 技术,通过深度学习和大数据分析,AI 能够高效处理海量的监控数据,从中提取有价值的信息,为小区性能监控提供强大的支持。在小区性能监控系统中引入了 AI 技术后,可以在日常网络优化、网络故障的定位与排障以及重大节日、会议、赛事保障等场景中取得显著成果:1 1、日常网络优化、日常网络优化由于统计指标众多,数据量巨大,传统人工分析的方式在日常网络优化中往往力不从心。而引入 AI 后,系统能够自动分析和处理大量的监控数据,为优化工作提供精准的数据支持。运维人员可以依据系统的建议,对网络布局、资源配置等进行精细化调整,从而显著提升网络的整体性能。在现网的差小区优化工作中,借助异常检测算法和深度学习分类算法,初始数据筛查相较于传统人工分析,可以节省 90%以上的的时间。2 2、网络故障的迅速定位与快速排障、网络
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 研究报告 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服