1、 第二章第二章 细胞的分子基础细胞的分子基础 及基本概念及基本概念第一节 细胞的化学及分子组成无机化合物有机化合物水水无机盐无机盐蛋白质蛋白质核酸核酸酶酶糖类糖类脂类脂类生物大分子生物大分子一、水与无机盐v(一)水是原生质最基本的物质v存在方式:游离水95;结合水5。随着细胞的衰老,细胞的含水量逐渐下降,活细胞的含水量不低于75。v作用:溶解无机物、调节温度、参加酶反应、参与物质代谢和形成细胞有序结构。水之所以具有这么多的重要功能是和水的特有属性分不开的:1.水分子是偶极子2.水分子间可形成氢键3.水分子可解离为离子(二)无机盐v含量很少,约占1。盐在细胞中解离为离子,离子的浓度除具有调节渗透
2、压和维持酸碱平衡的作用外,还有许多重要的作用。v主要的阴离子有Cl、PO4和HCO3,其中磷酸根离子在细胞代谢活动中最为重要:在细胞的能量代谢中起着关键作用;是核苷酸、磷脂、磷蛋白和磷酸化糖的组成成分;调节酸碱平衡。v主要的阳离子有:Na+、K+、Ca2+、Mg2+、Fe2+、Fe3+、Mn2+、Cu2+、Co2+、Mo2+。阳离子在细胞中的作用离子种类在细胞中的作用Fe2+或Fe3+血红蛋白、细胞色素、过氧化物酶和铁蛋白的成分Na+维持膜电位K+维持膜电位、参与蛋白质合成和某些酶促合成Mg2+叶绿素、磷酸酶、Na+-K+泵Mn2+肽酶Cu2+酪氨酸酶、抗坏血酸氧化酶Co2+肽酶Mo2+硝酸还
3、原酶、黄嘌呤氧化酶Ca2+钙调素、肌动球蛋白、ATP酶细胞中有机物达几千种之多,主要由四大类分子所组成:蛋白质、核酸、脂类和糖,这些分子约占细胞干重的90%以上。(一)蛋白质是细胞的主要结构成分,而且更重要的是,生物专有的催化剂酶是蛋白质,因此细胞的代谢活动离不开蛋白质。1.蛋白质的结构二、细胞的有机分子二、细胞的有机分子-氨基酸的通式氨基酸的通式 肽和肽键的形成肽和肽键的形成肽单位肽单位肽键肽键肽平面肽平面蛋蛋白白质质结结构构的的主主要要层层次次一级结构一级结构四级结构四级结构二级结构二级结构三级结构三级结构primary structureprimary structuresecondar
4、y structuresecondary structureTertiary structureTertiary structurequariernary structurequariernary structure超二级结构超二级结构结构域结构域 supersecondary structuresupersecondary structureStructure domanStructure doman蛋白质的一级结构蛋白质的一级结构多肽链中氨基酸的排列顺序,包括二硫键的位置称为蛋白多肽链中氨基酸的排列顺序,包括二硫键的位置称为蛋白质的一级结构质的一级结构(primary structure)
5、primary structure)。这是蛋白质最基本的结构,这是蛋白质最基本的结构,它内寓着决定蛋白质高级结构和生物功能的信息。它内寓着决定蛋白质高级结构和生物功能的信息。例:例:牛胰岛素的一级结构牛胰岛素的一级结构蛋白质的二级结构蛋白质的二级结构()螺旋螺旋(helixhelix)()折叠折叠(-pleated sheet)()转角转角(-turn)()无规则卷曲无规则卷曲(nonregular coil)蛋白质的二级结构(蛋白质的二级结构(secondary structuresecondary structure)指肽链指肽链主链不同区段通过自身的相互作用,形成氢键,沿某一主主链不同区
6、段通过自身的相互作用,形成氢键,沿某一主轴盘旋折叠而形成的局部空间结构,是蛋白质结构的构象轴盘旋折叠而形成的局部空间结构,是蛋白质结构的构象单元主要有以下类型:单元主要有以下类型:特特征征:1 1、每每隔隔3.63.6个个AAAA残残基基 螺螺 旋旋 上上 升升 一一 圈圈,螺螺 距距0.540.54nm;nm;2、螺螺旋旋体体中中所所有有氨氨基基酸酸残残基基R侧侧链链都都伸伸向向外外侧侧,链链中中的的全全部部C=0 和和N-H几几乎都平行于螺旋轴乎都平行于螺旋轴;3、每每个个氨氨基基酸酸残残基基的的N-H与与前前面面第第四四个个氨氨基基酸酸残残基基的的C=0形形成成氢氢键键,肽肽链链上上所所
7、有有的的肽肽键键都都参参与与氢氢键键的的形形成。成。螺旋(螺旋(helix)形成因素形成因素:与与Amino acid组组成和排列顺序直接相关。成和排列顺序直接相关。多多态态性性:多多数数为为右右手手(较较稳稳定定),亦亦有有少少数数左左手手螺螺旋旋存存在在(不不稳稳定定);存存在在尺尺寸寸不不同同的螺旋。的螺旋。折叠(折叠(-pleated sheet-pleated sheet)特特征征:两两条条或或多多条条伸伸展展的的多多肽肽链链(或或一一条条多多肽肽链链的的若若干干肽肽段段)侧侧向向集集聚聚,通通过过相相邻邻肽肽链链主主链链上上的的N-HN-H与与C=OC=O之之间间有有规规则则的的氢
8、氢键键,形形成成锯锯齿齿状状片片层层结结构构,即即折折叠叠片。片。类别类别:平行平行 反平行反平行 转角(转角(-turn-turn)特特征征:多多肽肽链链中中氨氨基基酸酸残残基基n n的的羰羰基基上上的的氧氧与与残残基基(n+3n+3)的的氮氮原原子子上上的的氢氢之之间间形形成成氢氢键键,肽肽键键回折回折1801800 0。无无规规则则卷卷曲曲示示意意图图无规则卷曲无规则卷曲 蛋白质的三级结构蛋白质的三级结构 多多肽肽键键在在二二级级结结构构的的基基础础上上,通通过过侧侧链链基基团团的的相相互互作作用用进进一一步步卷卷曲曲折折叠叠,借借助助次次级级键键维维系系使使螺螺旋旋、折折叠叠片片、转转
9、角角等等二二级级结结构构相相互互配配置置而而形形成成特特定定的的构构象象。三三级级结结构构的的形形成成使使肽肽链链中中所所有有的的原原子子都都达达到到空空间间上上的的重重新排布。新排布。肌肌红红蛋蛋白白三三级级结结构构核糖核酸酶三级结构示意图核糖核酸酶三级结构示意图 N His12CHis119Lys41蛋白质的四级结构蛋白质的四级结构四四级级结结构构是是指指由由相相同同或或不不同同的的称称作作亚亚基基(subunitsubunit)的的亚亚单单位位按按照照一一定定排排布布方方式式聚聚合合而而成成的的蛋蛋白白质质结结构构,维维持持四四级级结结构构稳稳定定的的作作用用力力是是疏疏水水键键、离离子
10、子键键、氢氢键键、范范得得华华力力。亚亚基基本本身身都都具具有有球球状状三三级级结结构构,一一般般只只包包含含一一条条多多肽肽链,也有的由二条或二条以上由二硫键连接的肽链组成。链,也有的由二条或二条以上由二硫键连接的肽链组成。实例:实例:血红蛋白血红蛋白 烟草花叶病毒的外壳蛋白四级结构烟草花叶病毒的外壳蛋白四级结构血红蛋白四级结构血红蛋白四级结构烟草花叶病毒外壳蛋白四级结构的自我组装烟草花叶病毒外壳蛋白四级结构的自我组装蛋白质的分类 v蛋白质的种类繁多,结构复杂,迄今为止没有一个理想的分类方法。着眼的侧面不同,分类也就不同,例如从蛋白质形状上,可将它们分为球状蛋白质及纤维状蛋白质;从组成上可分
11、为单纯蛋白质(分子中只含氨基酸残基)及结合蛋白质(分子中除氨基酸外还有非氨基酸物质,后者称辅基);单纯蛋白质又可根据理化性质及来源分为清蛋白(又名白蛋白,albumin)、球蛋白(globulin)、谷蛋白(glutelin)、醇溶谷蛋白(prolamine)、精蛋白(protamine)、组蛋白(histone)、硬蛋白(scleroprotein)等。结合蛋白又可按其辅基的不同分为核蛋白(nucleoprotein)、磷蛋白(phosphoprotein)、金属蛋白(metalloprotein)、色蛋白(chromoprotein)等。蛋白质的分类v此外,还可以按蛋白质的功能将其分为活性
12、蛋白质(如酶、激素蛋白质、运输和贮存蛋白质、运动蛋白质、受体蛋白质、膜蛋白质等)和非活性蛋白质(如胶原、角蛋白等)两大类。简单蛋白质分类简单蛋白质分类结合蛋白质分类结合蛋白质分类蛋白质在生命活动中的作用:v1.酶的催化作用,已知酶有2000多种;v2.运输和储藏作用;v3.激素的调节作用,肽类和氨基酸类、蛋白类;v4.运动功能,肌肉收缩;v5.结构成分和机械支持物,胶原蛋白和弹性蛋白;v6.免疫功能,抗体(免疫球蛋白);v7.构成生物膜,体现膜功能,膜蛋白、载体、受体;v8.毒素的强调节作用,毒蛋白;v9.与动物生长生殖相关,蛋白质有功能大分子之称。蛋白质组学v随着人类基因组计划的实施和推进,
13、生命科学研究已进入了后基因组时代。在这个时代,生命科学的主要研究对象是功能基因组学,包括结构基因组研究和蛋白质组研究等。由于基因是遗传信息的携带者,而生命活动的执行者却是蛋白质。因此,即使得到人类全部基因序列,也只是解决了遗传信息库的问题。人类揭示整个生命活动的规律,就必须研究基因的产物蛋白质。蛋白质组学(Proteomics),它是以细胞内全部蛋白质的存在及其活动方式为研究对象。可以说蛋白质组研究的开展不仅是生命科学研究进入后基因组时代的里程碑,也是后基因组时代生命科学研究的核心内容之一。蛋白质组学v蛋白质组学(proteomics)就是指研究蛋白质组的技术及这些研究得到的结果。蛋白质组学的
14、研究试图比较细胞在不同生理或病理条件下蛋白质表达的异同,对相关蛋白质进行分类和鉴定。更重要的是蛋白质组学的研究要分析蛋白质间相互作用和蛋白质的功能。(二)核酸v是生物遗传信息的载体分子。由核苷酸单体聚合而成。分为RNA和DNA两大类。DNA的主要构象有三种:vB-DNA:右手螺旋模型,每圈螺旋10个碱基,螺旋扭角为36度,螺距34A,碱基倾角为-2度。vA-DNA:右手螺旋,每圈螺旋10.9个碱基,螺旋扭角为33度,螺距32A,碱基倾角为13度。通过75%适度的B-DNA经X光衍射得到,尚不能肯定自然条件是否存在。vZ-DNA:左手螺旋,每圈螺旋12个碱基,碱基倾角为9度。确切功能未知,可能起
15、调控作用。二、核酸的组成成分二、核酸的组成成分核酸 nucleic acid核苷酸 nucleotide核苷 nucleoside磷酸 phosphate嘌呤碱 purine base 或 嘧啶碱 pyrimidine base(碱基 base)核糖 ribose 或 脱氧核糖脱氧核糖 deoxyribose(戊糖 amyl sugar)5-磷酸核苷酸的基本结构磷酸核苷酸的基本结构OO(N=A、G、C、U、T)HH(O)H12NOHCH2HH543PO-OOO-基本碱基结构和命名基本碱基结构和命名嘌呤嘌呤嘧啶嘧啶Adenine (A)Guanine (G)Cytosine (C)Uracil
16、(U)Thymine (T)DNA的结构的结构(一)(一)DNA的一级结构的一级结构因为DNA的脱氧核苷酸只在它们所携带的碱基上有区别,所以脱氧核苷酸的序列常被认为是碱基序列碱基序列(base sequence)。通常碱基序列由DNA链的53方向写。DNA中有4种类型的核苷酸,有n个核苷酸组成的DNA链中可能有的不同序列总数为4n。(二)(二)DNA的双螺旋结构的双螺旋结构1953年,Watson 和Crick 提出。DNA的双螺旋模型特点的双螺旋模型特点 两两条条反反向向平平行行的的多多聚聚核核苷苷酸酸链链沿沿一一个个假假设设的中心轴右旋相互盘绕而形成。的中心轴右旋相互盘绕而形成。磷磷酸酸和
17、和脱脱氧氧核核糖糖单单位位作作为为不不变变的的骨骨架架组组成成位于外侧,作为可变成分的碱基位于内侧。位于外侧,作为可变成分的碱基位于内侧。链链间间碱碱基基按按AT,GC配配对对(碱碱基基配配对对原原则则,Chargaff定律)定律)螺螺旋旋直直径径2nm,相相邻邻碱碱基基平平面面垂垂直直距距离离0.34nm,螺螺旋旋结结构构每每隔隔10个个碱碱基基对对(base pair,bp)重复一次,间隔为重复一次,间隔为3.4nm 氢键氢键 碱基堆集力碱基堆集力 磷酸基上负电荷被胞内磷酸基上负电荷被胞内组蛋白或正离子中和组蛋白或正离子中和 碱基处于疏水环境中碱基处于疏水环境中DNA的双螺旋结构稳定因素的
18、双螺旋结构稳定因素DNA的双螺旋结构的双螺旋结构的意义的意义 该该模模型型揭揭示示了了DNA作作为为遗遗传传物物质质的的稳稳定定性性特特征征,最最有有价价值值的的是是确确认认了了碱碱基基配配对对原原则则,这这是是是是DNA复复制制、转转录录和和反反转转录录的的分分子子基基础础,亦亦是是遗遗传传信信息息传传递递和和表表达达的的分分子子基基础础。该该模模型型的的提提出出是是本本世世纪纪生生命命科科学学的的重重大大突突破破之之一一,它它奠奠定定了了生生物物化化学学和和分分子子生生物物学学乃乃至至整整个个生生命命科科学学飞速发展的基石。飞速发展的基石。RNA的一级结构的一级结构 RNA分分子子中中各各
19、核核苷苷之之间间的的连连接接方方式式(3-5磷磷酸酸二二酯酯键键)和和排排列列顺顺序序叫叫做做RNA的一级结构的一级结构OHOHOH53 RNA与与DNA的差异的差异 DNA RNA糖糖 脱氧核糖脱氧核糖 核糖核糖碱基碱基 AGCT AGCU 不含稀有碱基不含稀有碱基 含稀有碱基含稀有碱基RNA的类别的类别 信使信使RNA(messenger RNA,mRNA):):在蛋白在蛋白质合成中起模板作用;质合成中起模板作用;核糖体核糖体RNA(ribosoal RNA,rRNA):):与蛋白与蛋白质结合构成核糖体(质结合构成核糖体(ribosome),核糖体是蛋白质合成核糖体是蛋白质合成的场所;的场
20、所;转移转移RNA(transfor RNA,tRNA):):在蛋白质在蛋白质合成时起着携带活化氨基酸的作用。合成时起着携带活化氨基酸的作用。RNA催化剂v也叫核酶Ribozyme。vT.Cech 1982发现四膜虫rRNA的前体物能在没有任何蛋白质参与下进行自我加工,产生成熟的rRNA产物。这种加工方式称为自我剪接(self splicing)。v后来陆续发现,具有催化活性的RNA不只存在于四膜虫,而是普遍存在于原核和真核生物中。一个典型的例子核糖体的肽基转移酶。核酶核酶v大部分核酶参加RNA的加工和成熟,也有催化C-N键的合成。23SrRNA具肽酰转移酶活性。vRNA在DNA复制、转录、翻
21、译中均有一定的调控作用,与某写物质的运输与定位有关。(三)酶与生物催化剂1.酶是蛋白质性的催化剂,主要作用是降低化学反应的活化能,增加了反应物分子越过活化能屏障和完成反应的概率。2.某些酶需要有一种非蛋白质性的辅因子(cofactor)结合才能具有活性。辅因子可以是一种复杂的有机分子,也可以是一种金属离子,或者二者兼有。3.作用机制:在反应中与底物暂时结合,形成了酶底物复合物。降低活化能。反应完成后,酶分子迅即从酶底物复合物中解脱出来。4.作用特点:只催化热力学允许的反应;只加快反应速度,不改变反应平衡点;对正逆反应催化作用相同;降低反应活化能;催化特点:v高效;v特异;v不稳定性v可调,要求
22、适宜的pH和温度。调节方式:v竞争性抑制;v变构调节;v共价调节。(四)糖类v单糖是细胞主要的能源以及构成某些大分子物质的原料。重要的五碳糖为核糖,重要的六碳糖为葡萄糖。葡萄糖不仅是能量代谢的关键单糖,而且是构成多糖的主要单体。v多糖分为两类:一类是营养储备多糖,如:淀粉和糖原;另一类是结构多糖。如纤维素(cellulose)和几丁质(chitin)。营养贮备多糖淀粉、糖元结构多糖纤维素、几丁质(五)脂 类v脂类包括:脂肪酸、中性脂肪、类固醇、蜡、磷酸甘油酯、鞘脂、糖脂、类胡萝卜素等。难溶于水,而易溶于非极性有机溶剂。v1、中性脂肪(neutral fat)v甘油酯:脂肪酸同甘油酯化而形成。是
23、动植物体内脂肪的主要贮存形式。体与多余的碳水化合物可转化为甘油酯贮存起来。营养缺乏时,可提供能量。v蜡:脂肪酸同乙醇酯化形成(如蜂蜡)。蜡的碳氢链很长,熔点高于甘油酯。细胞中不含蜡质,但有的细胞可分泌蜡质。如:植物表皮细胞分泌的蜡膜;同翅目昆虫的蜡腺、如高等动物外耳道的耵聍腺。v2、磷脂:、磷脂:是构成生物膜的基本成分,也是许多代谢途径的参与者。分为甘油磷脂和鞘磷脂两大类。v 3、糖脂:、糖脂:糖脂也是构成细胞膜的成分,与细胞的识别和表面抗原性有关。(六)萜类和类固醇类v这两类化合物都是异戊二烯的衍生物。v主要的萜类化合物有胡萝卜素和维生素A、E、K等。还有一种多萜醇磷酸酯,它是细胞质中糖基转
24、移酶的载体。v类固醇类(steroids)化合物又称甾类化合物,其中胆固醇是构成膜的成分。另一些甾类化合物是激素类,如雌性激素、雄性激素、肾上腺激素等。第二节 细胞的形成v从无机小分子产生有机小分子v从有机小分子生成生物大分子v由生物大分子演变到原始细胞细胞生命的起源与进化 第三节第三节原核细胞与真核细胞v没有核膜,遗传物质集中在一个没有明确界限的低电子密度区,称为拟核(nucleoid)。vDNA为裸露的环状双螺旋分子,通常没有结合蛋白,没有恒定的内膜系统,核糖体为70S型。v原核细胞构成的生物称为原核生物,均为单细胞生物。一般以二分裂的方式繁殖,也有的产生孢子。TEM image,Esch
25、erichia coli一、原核细胞(一、原核细胞(Prokaryotic cell)(一)细菌bacteriumv是在自然界分布最广、个体数量最多的有机体。v可分为:球菌、杆菌和螺旋菌(弧形菌)。v绝大多数细菌的直径在0.55m之间。大大肠肠杆杆菌菌淋淋病病球球菌菌肉肉毒毒梭梭菌菌弧弧形形霍霍乱乱菌菌(二)支原体 mycoplasmav大小通常为0.20.3m,可通过滤菌器。无细胞壁,不能维持固定的形态而呈现多形性。细胞膜中胆固醇含量较多,约占36%,凡能作用于胆固醇的物质(如二性霉素B、皂素等)均可引起支原体膜的破坏而使支原体死亡。v基因组为环状双链DNA,分子量小(仅有大肠杆菌的五分之一
26、),合成与代谢很有限。肺炎支原体的一端有一种特殊的末端结构(terminal structure),能使支原体粘附于呼吸道粘膜上皮细胞表面,与致病性有关。肺炎支原体(三)衣原体和立克次氏体v衣原体(Chlamydia)直径200nm-500nm,能通过滤菌膜。立克次氏体(Rickettsia)略大。细胞壁结构类似于革兰氏阴性菌,酶系统不完全,必须在寄主细胞内生活,有摄能寄生物(energe parasite)之称。v砂眼是衣原体引起的,由于能形成包含体,起初被认为是大型病毒,1956年,我国著名微生物学家汤飞凡及其助手张晓楼等人首次分离到沙眼的病原体。v立克次氏体也是专性细胞内寄生的,与衣原体
27、的不同处在于其细胞较大,无滤过性,合成能力较强,且不形成包涵体。Chlamydia pneumoniae associated with macrophages(RAW cells).A.Typical pear shaped EBs(arrows)are shown at the macrophage surface.B.Intracellular EBs.(四)蓝藻v又称蓝细菌,是最简单的自养生物。它的光合作用类似于高等植物,而不同于光合细菌。没有叶绿体,但有质膜内陷形成的捕光装置。vDNA分子环状,但遗传信息量很大,可与高等植物相比。v体积比其它原核细胞大得多,直径约10m左右,甚至可达
28、70bm(颤藻)。v属单细胞生物,但有些蓝藻经常以丝状的细胞群体存在,如:属 蓝 藻 门 念 珠 藻 类 的 发 菜(nostoc commune var,flagtlliforme)就是蓝藻的丝状体。Cyanobacteria(五)古细菌(archaebacteria)v具有原核生物的某些特征,无核膜及内膜系统;v也有真核生物的特征,甲硫氨酸起始蛋白质的合成、核糖体对氯霉素不敏感、RNA聚合酶和真核细胞的相似、DNA具有内含子并结合组蛋白。v此外,细胞膜中的脂类是不可皂化的,细胞壁不含肽聚糖。v生活在极端环境中,如:产甲烷菌、极端嗜盐菌、嗜热嗜酸菌。v具有核膜,由膜围成的各种细胞器,如核膜、
29、内质网、高尔基体、线粒体、叶绿体、溶酶体等在结构上形成了一个连续的体系,称为内膜系统。v内膜系统将细胞质分隔成不同的区域,即所谓的区隔化(compartmentalization)。区隔化使细胞内表面积增加了数十倍,代谢能力增强。二、真核细胞 Eukaryotic cellv1、原生质(protoplasm):1839 Purkinje用原生质一词指细胞的全部活性物质,从现代概念来说它包括质膜、细胞质和细胞核(或拟核)。v2、质膜(plasma membrane):是细胞表面的单位膜。v3、细胞核:细胞核(nucleus)是细胞内最重要的细胞器,核表面是由双层膜构成的核被膜(nuclear e
30、nvelope),核内包含有由DNA和蛋白质构成的染色体(chromosome)。核内1至数个小球形结构,称为核仁(nucleolus)。细胞核中的原生质称为核质。v4、细胞质(cytoplasm):质膜与核被膜之间的原生质。v5、细胞器(organelle):具有特定形态和功能的显微或亚显微结构称为细胞器,如:endoplasmic reticulum、Golgi body、lysosome、mitochondrion、chloroplast、cytoskeleton、centriole、microbody。v6、细胞质基质(cytoplasmic matrix)细胞质中除细胞期以外的部分。
31、又称为或胞质溶胶(cytosol),其体积约占细胞质的一半。v细胞质基质的功能:a.为细胞内各类生化反应的正常进行提供了相对稳定的离子环境。b.许多代谢过程是在细胞基质中完成的,如蛋白质的合成;核苷酸的合成;脂肪酸合成;糖酵解;磷酸戊糖途径;糖原代谢;信号转导。c.供给细胞器行使其功能所需要的一切底物。d.控制基因的表达,与细胞核一起参与细胞的分化。e.参与蛋白质的合成、加工、运输、选择性降解。Animal cellPlant cell二、细胞的形状和大小v单细胞生物细胞的形态通常与细胞外沉积物或细胞骨架有关,如硅藻呈各种奇异的形态、草履虫像鞋底。v高等生物细胞的形状与细胞功能及细胞间的相互作
32、用有关。如肌肉细胞呈梭形;红细胞为圆盘状;植物叶表皮的保卫细胞成半月形,2个细胞围成一个气孔,以利于呼吸和蒸腾。v高等动物的细胞离开有机体分散存在时,形状往往发生变化。如平滑肌细胞在体内成梭形,而在离体培养时则可成多角形。草草履履虫虫眼眼 虫虫钟形虫钟形虫植植物物气气孔孔细细胞胞植植物物薄薄壁壁细细胞胞木木材材中中的的导导管管人人类类红红细细胞胞巨巨噬噬细细胞胞神神经经元元细细胞胞三、原核与真核细胞的区别三、原核与真核细胞的区别序号内 容1.都具有类似的细胞质膜结构2.都以DNA作为遗传物质,并使用相同的遗传密码3.都是以一分为二的方式进行细胞分裂4.具有相同的遗传信息转录和翻译机制,有类似的
33、核糖体结构5.代谢机制相同(如糖酵解和TCA循环)6.具有相同的化学能贮能机制,如ATP合成酶(原核位于细胞质膜,真核位于线粒体膜上)7.光合作用机制相同(蓝细菌与植物相比较)8.膜蛋白的合成和插入机制相同9.都是通过蛋白酶体(蛋白质降解结构)降解蛋白质(古细菌与真核细胞相比较)原核细胞与真核细胞的相同点原核细胞与真核细胞的相同点(一)概述v是一类非细胞形态的微生物,特征:v个体微小,可通过滤菌器,大多数病毒必须用电镜才能看见,一般在2030nm之间;v核酸为DNA或RNA,没有含两种核酸的病毒;v专营细胞内寄生生活;v具有受体连结蛋白(receptor binding protein),与敏
34、感细胞表面的病毒受体连结,进而感染细胞。一、病毒的基本特征四、病 毒 VirusLambda Bacteriophage DNA(TEM x153,000)(二)病毒的结构l由核酸(DNA或RNA)芯和蛋蛋白白质质衣衣壳壳(capsid)所构成,称核核衣壳衣壳(nucleocapsid)。l各种病毒所含的遗传信息量不同,少的只含有3个基因,多的可达300个基因。v有的病毒衣壳外面尚有一层被被膜膜(envelope),这层被膜是病毒粒子脱离细胞时,包被上的宿主细胞的质膜,被膜中含有病毒融合蛋白,如流感病毒。病毒融合蛋白在病毒进入宿主细胞时起着关键作用。v组成病毒衣壳的亚单位称壳壳微微粒粒(cap
35、somer)。病毒的形成不需要酶的参加,只要条件具备,便可完成自我装配。一个成熟有感染性的病毒颗粒称“病毒体”(virion)。其装配形式有二十面体对称、螺旋对称二十面体对称、螺旋对称和复合对称复合对称三种类型。Virusesv病毒有五种形态:球形(Sphericity):大多数人类和动物病毒为球形,如脊髓灰质炎病毒、疱疹病毒及腺病毒等;丝形(Filament):多见于植物病毒,如烟草花叶病病毒,人类流感病毒有时也可形成丝形;弹形(Bullet-shape):形似子弹头,如狂犬病病毒等,其他多为植物病毒。砖形(Brick-shape):如痘病毒、天花病毒等;蝌蚪形(Tadpole-shape)
36、:由一卵圆形的头及一条细长的尾组成,如噬菌体。v其其中中为为二二十十面面体体对对称称;、为为螺螺旋旋对对称称;、复复合对称。合对称。脊脊髓髓灰灰质质炎炎病病毒毒 球球形形病病毒毒烟烟草草花花叶叶病病毒毒 线线形形病病毒毒痘痘病病毒毒 砖砖形形病病毒毒狂狂犬犬病病毒毒 子子弹弹形形病病毒毒有被膜T T4 4噬噬菌菌体体 蝌蝌蚪蚪形形病病毒毒流流感感冒冒病病毒毒 丝丝状状有有被被膜膜的的病病毒毒v病毒只有在侵入细胞以后才表现出生命现象。病毒的生活周期可分为两个阶段:v细胞外阶段细胞外阶段,以成熟的病毒粒子形式存在;v细细胞胞内内阶阶段段,即感感染染阶阶段段,在此阶段中进行复制和繁殖。感染阶段开始时
37、,病毒的遗传物质由衣壳中释放出来,注入宿主细胞中,然后在病毒核酸信息的指导控制下,形成新的病毒粒子。v根据寄生的宿主不同,病毒可分为:动动物物病病毒毒、植植物物病病毒毒、细菌病毒细菌病毒(即噬菌体即噬菌体)v根据病毒所含的核酸的性质和状态不同,可将病毒分为6类:1.双链DNA+mRNA蛋白质,如天花病毒、T-偶数噬菌体。2.单链+DNADNA+RNA蛋白质,如细小DNA病毒。3.双链RNA+mRNA蛋白质,如呼肠孤病毒。4.单链+RNARNA+RNA蛋白质脊髓灰质炎病毒。5.单链RNA+RNA+蛋白质,如流感病毒、狂犬病毒。6.单 链+RNADNADNA+mRNA蛋 白 质,即 逆 转 录 病
38、 毒(retrovirus)又称RNA肿瘤病毒(oncornavirus)。反转录病毒的生活史反转录病毒的生活史(三)类病毒v没有蛋白质外壳,仅为一裸露的RNA分子。v不能像病毒那样感染细胞,只有当植物细胞受到损伤,失去了膜屏障,它们才能在供体植株与受体植株间传染。v马铃薯锤管类病毒仅由一个含359个核苷酸单链环状RNA分子组成,链内有一些互补序列。分子长约4050nm,不能制造衣壳蛋白。四、病毒的进化地位v无论是病毒还是类病毒都不具有独立进行生物合成的能力,它们都是细胞的寄生物,因此在进化上病毒的出现不可能早于细胞。v病毒的前身很可能是在宿主染色体外独立进行复制的质粒(plasmid)。质粒
39、既有DNA型的,也有RNA型的。它与病毒一样具有专一的核苷酸序列作为复制的起始部位。当质粒获得了为衣壳蛋白质编码的基因时,即意味着病毒出现了。五、蛋白质感染因子五、蛋白质感染因子vS.B.Prusiner 1982年发现于患羊瘙痒病(scrapie)的仓鼠,命名为prion。Prusiner因此于1997年获得诺贝尔奖。v蛋白质感染子蛋白(prion protein,简称PrP),由Prnp基因编码,该基因位于人20号染色体,小鼠2号染色体。这种蛋白质存在于神经元和神经胶质细胞表面上,可能其信号转导作用。正常Prnp基因产物为PrPc蛋白,对蛋白酶很敏感,具有致病作用的是PrPSc蛋白。vPR
40、IONPrPCPrPSCPrPsc的增殖vCJD病人大脑组织切片,左、海绵状病变及周围的沉淀斑,右、淀粉样蛋白沉淀,短线表示50um。引自Stanley B.Prusiner 1997 目前已知的人类PRION疾病主要有:v克-雅二氏病(CreutzfeldtJakob disease,CJD):自身PrP蛋白发生变异引起的。v变异型克-雅氏病(vCJD):PRION感染。vGSS综合征(Gerstmann-Straussler Scheinker disease):由Prnp基因缺陷引起。v克鲁病(Kuru):PRION感染。v致死性家族性失眠症(Fatal familial insomni
41、a,FFI):Prnp基因变异。第第 四四 节节细胞的形态细胞的形态大小和数目大小和数目一、一、细胞的形态细胞的形态v细胞具有多种多样的形态,有球形、杆状、星形、多角形、梭形、圆柱形等。多细胞生物体,依照细胞在各种组织和器官中所承担的不同功能,分化形成了各种不同的形状。这些不同的形状一方面取决于对功能的适应,另一方面亦受细胞的表面张力、胞质的粘滞性、细胞膜的坚韧程度,以及微管和微丝骨架等因素的影响。不同的细胞形态 二、二、细胞的大小及体积的恒定细胞的大小及体积的恒定v细胞最为典型的特点是在一个极小的体积中形成极为复杂而又高度组织化的结构。典型的原核细胞的平均大小在110m之间,而真核细胞的直径
42、平均为330m,一般为1020m 名称名称人卵人卵口腔上口腔上皮细胞皮细胞肝细胞肝细胞红细胞红细胞变形虫变形虫海胆卵海胆卵伤寒菌伤寒菌肺炎球菌肺炎球菌m12075207100702.4x0.50.2x0.1大多数动植物细胞直径在2030m间。一般真核细胞的体积大于原核细胞,卵细胞大于体细胞。鸵鸟的卵黄直径可达5cm;支原体只有0.1m;人的坐骨神经细胞可长达1m。几种细胞的大小几种细胞的大小人卵与精子典型的原核、真核、病毒和分子的大小 三、细胞的数目v单细胞生物仅由一个细胞组成,多细胞生物细胞数量因生物的种类不同而异,生物体个体越大,其细胞数量就越多。v人婴儿期约有21012个细胞,成人后约有61013个细胞。v生物体细胞的数量处于动态平衡之中。