资源描述
§1.4 可逆矩阵
★ 教学内容:
1. 可逆矩阵的概念;
2. 可逆矩阵的判定;
3. 利用转置伴随矩阵求矩阵的逆;
4. 可逆矩阵的性质。
★ 教学课时:100分钟/2课时。
★ 教学目的:
通过本节的学习,使学生
1. 理解可逆矩阵的概念;
2. 掌握利用行列式判定矩阵可逆以及利用转置伴随矩阵求矩阵的逆的方法;
3. 熟悉可逆矩阵的有关性质。
★ 教学重点和难点:
本节重点在于使学生了解什么是可逆矩阵、如何判定可逆矩阵及利用转置伴随矩阵求逆的方法;难点在于转置伴随矩阵概念的理解。
★ 教学设计:
一 可逆矩阵的概念。
1.引入:利用数字乘法中的倒数引入矩阵的逆的概念。
2.定义1.4.1(可逆矩阵)对于矩阵,如果存在矩阵,使得则称为可逆矩阵,简称可逆,并称为的逆矩阵,或的逆,记为。
3.可逆矩阵的例子:
(1)例1 单位矩阵是可逆矩阵;
(2)例2 ,,则可逆;
(3)例3 对角矩阵可逆;
(4)例4 ,,则可逆。
4.可逆矩阵的特点:
(1)可逆矩阵都是方阵;
(2)可逆矩阵的逆唯一,且和是同阶方阵;
(3)可逆矩阵的逆也是可逆矩阵,并且和互为逆矩阵;
(4)若、为方阵,则。
二 可逆矩阵的判定及转置伴随矩阵求逆
1.方阵不可逆的例子:
例5 不可逆;
例6 不可逆;
2.利用定义判定矩阵可逆及求逆的方法:
(1)说明利用定义判定及求逆的方法,
(2)说明这种方法的缺陷;
3.转置伴随矩阵求逆
(1)引入转置伴随矩阵
1)回顾行列式按一行一列展开公式及推论
,
;
2)写成矩阵乘法的形式有:
3)定义1.4.2(转置伴随矩阵)设式是的行列式中的代数余子式,则
称为的转置伴随矩阵。
(2)转置伴随矩阵求逆:
1);
2)定理1.4.1 可逆的充分必要条件是(或非奇异),且
;
3)例7 判断矩阵是否可逆,若可逆,求其逆矩阵。
4)例8 设,判断是否可逆,若可逆,求其逆矩阵。
三 可逆矩阵的性质
1.性质1 ;
2.性质2 ;
3.性质3 ;
4.性质4 ;
5.性质5 ;
6.性质6 ;
7.。
例9 设,均为三阶方阵,且,,求。
四 可逆的应用——解矩阵方程
例10 设方程,证明:可逆,并求其逆。
展开阅读全文