收藏 分销(赏)

高中数学平面向量知识点及习题分章节.doc

上传人:精**** 文档编号:4075009 上传时间:2024-07-29 格式:DOC 页数:6 大小:329.40KB
下载 相关 举报
高中数学平面向量知识点及习题分章节.doc_第1页
第1页 / 共6页
高中数学平面向量知识点及习题分章节.doc_第2页
第2页 / 共6页
高中数学平面向量知识点及习题分章节.doc_第3页
第3页 / 共6页
高中数学平面向量知识点及习题分章节.doc_第4页
第4页 / 共6页
高中数学平面向量知识点及习题分章节.doc_第5页
第5页 / 共6页
点击查看更多>>
资源描述

1、必修4 2.1向量的概念及其表示当堂练习:1.下列各量中是向量的是 ( )A.密度 B.体积 C.重力 D.质量2下列说法中正确的是 ( ) A. 平行向量就是向量所在的直线平行的向量 B. 长度相等的向量叫相等向量 C. 零向量的长度为零 D.共线向量是在一条直线上的向量3设O是正方形ABCD的中心,则向量、是 ( )A平行向量 B有相同终点的向量C相等的向量 D模都相同的向量4.下列结论中,正确的是 ( ) A. 零向量只有大小没有方向 B. 对任一向量,|0总是成立的 C. |=| D. |与线段BA的长度不相等5.若四边形ABCD是矩形,则下列命题中不正确的是 ( ) A. 与共线 B

2、. 与相等 C. 与 是相反向量 D. 与模相等6已知O是正方形ABCD对角线的交点,在以O,A,B,C,D这5点中任意一点为起点,另一点为终点的所有向量中, (1)与相等的向量有 ;(2)与长度相等的向量有 ;(3)与共线的向量有 7在平行向量一定相等;不相等的向量一定不平行;共线向量一定相等;相等向量一定共线;长度相等的向量是相等向量;平行于同一个向量的两个向量是共线向量中,不正确的命题是 并对你的判断举例说明 8如图,O是正方形ABCD对角线的交点,四边形OAED,OCFB都是正方形,在图中所示的向量中:(1)与相等的向量有 ;(2)写出与共线的向有 ;(3)写出与的模相等的有 ;(4)

3、向量与是否相等?答 9O是正六边形ABCDE的中心,且,在以A,B,C,D,E,O为端点的向量中:(1)与相等的向量有 ;(2)与相等的向量有 ;(3)与相等的向量有 10在如图所示的向量,中(小正方形的边长为1),是否存在:(1)是共线向量的有 ;(2)是相反向量的为 ;(3)相等向量的的 ;(4)模相等的向量 11如图,ABC中,D,E,F分别是边BC,AB,CA的中点,在以A、B、C、D、E、F为端点的有向线段中所表示的向量中,(1)与向量共线的有 (2)与向量的模相等的有 (3)与向量相等的有 12如图,中国象棋的半个棋盘上有一只“马”,开始下棋时,它位于A点,这只“马”第一步有几种可

4、能的走法?试在图中画出来若它位于图中的P点,这只“马”第一步有几种可能的走法?它能否从点A走到与它相邻的B?它能否从一交叉点出发,走到棋盘上的其它任何一个交叉点?必修4 2.2向量的线性运算1、为非零向量,且,则 ( )A与方向相同 BC D与方向相反2设,而是一非零向量,则下列各结论:;,其中正确的是 ( )A B C D33在ABC中,D、E、F分别BC、CA、AB的中点,点M是ABC的重心,则 等于 ( )ABCD4已知向量反向,下列等式中成立的是( )ABCD5若化简 ( )A B C D 以上都不对6已知四边形ABCD是菱形,点P在对角线AC上(不包括端点A、C),则=( ) A B

5、 C D 7已知,AOB=60,则_。8当非零向量和满足条件 时,使得平分和间的夹角。9如图,D、E、F分别是ABC边AB、BC、CA上的中点,则等式:10若向量、满足,、为已知向量,则=_; =_11一汽车向北行驶3 km,然后向北偏东60方向行驶3 km,求汽车的位移.12.如图在正六边形ABCDEF中,已知:=, = ,试用、表示向量 , , ,. 必修4 2.3平面向量的基本定理及坐标表示1若向量a=(1,1),b=(1,1),c=(1,2),则c等于( )AabBabCabDa+b2若向量a=(x2,3)与向量b=(1,y+2)相等,则( )Ax=1,y=3Bx=3,y=1Cx=1,

6、y=5Dx=5,y=13已知向量且,则= ( )A B C D4已知 ABCD的两条对角线交于点E,设,用来表示的表达式( )ABCD5已知两点P(,6)、(3,),点P(,)分有向线段所成的比为,则、的值为( )A,8 B,8 C,8 D4,6下列各组向量中: 有一组能作为表示它们所在平面内所有向量的基底,正确的判断是 ( )ABCD7若向量=(2,m)与=(m,8)的方向相反,则m的值是 8已知=(2,3), =(-5,6),则|+|= ,|-|= 9设=(2,9), =(,6),=(-1,),若+=,则= , = .10ABC的顶点A(2,3),B(4,2)和重心G(2,1),则C点坐标

7、为 .11已知向量e1、e2不共线,(1)若=e1e2,=2e1e2,=3e1e2,求证:A、B、D三点共线.(2)若向量e1e2与e1e2共线,求实数的值.12如果向量=i2j, =i+mj,其中i、j分别是x轴、y轴正方向上的单位向量,试确定实数m的值使A、B、C三点共线.必修4 2.4平面向量的数量积1已知=(3,0),=(-5,5)则与的夹角为 ( ) A450 B、600 C、1350 D、12002已知=(1,-2),=(5,8),=(2,3),则()的值为 ( ) A34 B、(34,-68) C、-68 D、(-34,68)3已知=(2,3),=(-4,7)则向量在方向上的投影

8、为 ( ) A B、 C、 D、4已知=(3,-1),=(1,2),向量满足=7,且,则的坐标是( ) A(2,-1) B、(-2,1) C、(2,1) D、(-2,-1)5有下面四个关系式(1)=;(2)()=();(3)=;(4)0=0,其中正确的个数是 ( )A、4 B、3 C、2 D、16已知=(m-2,m+3),=(2m+1,m-2)且与的夹角大于90,则实数m( )A、m2或m-4/3 B、-4/3m2 C、m2 D、m2且m-4/37已知点A(1,0),B(3,1),C(2,0)则向量与的夹角是 。8已知=(1,-1),=(-2,1),如果(,则实数= 。9若|=2,|=,与的夹

9、角为45,要使k-与垂直,则k= 10已知+=2-8,=-8+16,那么= 11已知2+=(-4,3),-2=(3,4),求的值。12已知点A(1,2)和B(4,-1),试推断能否在y轴上找到一点C,使ACB=900?若能,求点C的坐标;若不能,说明理由。必修4 2.5平面向量的应用1已知A、B、C为三个不共线的点,P为ABC所在平面内一点,若,则点P与ABC的位置关系是 ( ) A、点P在ABC内部 B、点P在ABC外部C、点P在直线AB上 D、点P在AC边上2已知三点A(1,2),B(4,1),C(0,-1)则ABC的形状为 ( ) A、正三角形 B、钝角三角形 C、等腰直角三角形 D、等

10、腰锐角三角形3当两人提起重量为|G|的旅行包时,夹角为,两人用力都为|F|,若|F|=|G|,则的值为( ) A、300 B、600 C、900 D、12004某人顺风匀速行走速度大小为a,方向与风速相同,此时风速大小为v,则此人实际感到的风速为 ( ) A、v-a B、a-v C、v+a D、v5一艘船以5km/h的速度向垂直于对岸方向行驶,船的实际航行方向与水流方向成300角,则水流速度为 km/h。6两个粒子a,b从同一粒子源发射出来,在某一时刻,以粒子源为原点,它们的位移分别为Sa=(3,-4),Sb=(4,3),(1)此时粒子b相对于粒子a的位移 ;(2)求S在Sa方向上的投影 。7

11、如图,点P是线段AB上的一点,且APPB=,点O是直线AB外一点,设,试用的运算式表示向量8如图,ABC中,D,E分别是BC,AC的中点,设AD与BE相交于G,求证:AGGD=BGGE=219如图, O是ABC外任一点,若,求证:G是ABC重心(即三条边上中线的交点)750ABC东北45010一只渔船在航行中遇险,发出求救警报,在遇险地西南方向10mile处有一只货船收到警报立即侦察,发现遇险渔船沿南偏东750,以9mile/h的速度向前航行,货船以21mile/h的速度前往营救,并在最短时间内与渔船靠近,求货的位移。必修4 2.6平面向量单元测试1在矩形ABCD中,O是对角线的交点,若=(

12、)ABCD2对于菱形ABCD,给出下列各式:2其中正确的个数为( )A1个B2个C3个D4个3在 ABCD中,设,则下列等式中不正确的是( )AB CD4已知向量反向,下列等式中成立的是( )ABC D5已知平行四边形三个顶点的坐标分别为(1,0),(3,0),(1,5),则第四个点的坐标为( )A(1,5)或(5,5)B(1,5)或(3,5)C(5,5)或(3,5)D(1,5)或(3,5)或(5,5)6与向量平行的单位向量为( )ABC或 D7若,则的数量积为 ( )A10B10C10D108若将向量围绕原点按逆时针旋转得到向量,则的坐标为 ( )A B CD9设kR,下列向量中,与向量一定

13、不平行的向量是( )A BCD10已知,且,则的夹角为 ( )A60 B120 C135 D15011非零向量,则的夹角为 .12在四边形ABCD中,若,则四边形ABCD的形状是 13已知,若平行,则= .14已知为单位向量,=4,的夹角为,则方向上的投影为 .15已知非零向量满足,求证: 16已知在ABC中,且ABC中C为直角,求k的值.17、设是两个不共线的向量,若A、B、D三点共线,求k的值.18已知 ,的夹角为60o,当当实数为何值时, 19如图,ABCD为正方形,P是对角线DB上一点,PECF为矩形,求证:PA=EF;PAEF. 20如图,矩形ABCD内接于半径为r的圆O,点P是圆周上任意一点,求证:PA2+PB2+PC2+PD2=8r2.6

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服