收藏 分销(赏)

高中数学必修4三角函数综合测试题及答案详解.doc

上传人:丰**** 文档编号:4074913 上传时间:2024-07-29 格式:DOC 页数:11 大小:42.64KB
下载 相关 举报
高中数学必修4三角函数综合测试题及答案详解.doc_第1页
第1页 / 共11页
高中数学必修4三角函数综合测试题及答案详解.doc_第2页
第2页 / 共11页
点击查看更多>>
资源描述
适合北师大版,人教版等 必修4三角函数综合测试题及答案详解 一、选择题 1.下列说法中,正确的是(  ) A.第二象限的角是钝角 B.第三象限的角必大于第二象限的角 C.-831°是第二象限角 D.-95°20′,984°40′,264°40′是终边相同的角 2.若点(a,9)在函数y=3x的图象上,则tan的值为(  ) A.0 B. C.1 D. 3.若|cosθ|=cosθ,|tanθ|=-tanθ,则的终边在(  ) A.第一、三象限 B.第二、四象限 C.第一、三象限或x轴上 D.第二、四象限或x轴上 4.如果函数f(x)=sin(πx+θ)(0<θ<2π)的最小正周期是T,且当x=2时取得最大值,那么(  ) A.T=2,θ= B.T=1,θ=π C.T=2,θ=π D.T=1,θ= 5.若sin=-,且π<x<2π,则x等于(  ) A.π B.π C.π D.π 6.已知a是实数,而函数f(x)=1+asinax的图象不可能是(  ) 7.将函数y=sinx的图象向左平移φ(0≤φ<2π)个单位长度后,得到y=sin的图象,则φ=(  ) A. B. C. D. 8.若tanθ=2,则的值为(  ) A.0 B.1 C. D. 9.函数f(x)=的奇偶性是(  ) A.奇函数 B.偶函数 C.既是奇函数又是偶函数 D.既不是奇函数也不是偶函数 10.函数f(x)=-cosx在(0,+∞)内(  ) A.没有零点 B.有且仅有一个零点 C.有且仅有两个零点 D.有无穷多个零点 11.已知A为锐角,lg(1+cosA)=m,lg=n,则lgsinA的值是(  ) A.m+ B.m-n C. D.(m-n) 12.函数f(x)=3sin的图象为C, ①图象C关于直线x=π对称; ②函数f(x)在区间内是增函数; ③由y=3sin2x的图象向右平移个单位长度可以得到图象C,其中正确命题的个数是(  ) A.0 B.1 C.2 D.3 二、填空题(本大题共4小题,每题5分,共20分.将答案填在题中横线上) 13.已知sin=,α∈,则tanα=________. 14.函数y=3cosx(0≤x≤π)的图象与直线y=-3及y轴围成的图形的面积为________. 15.已知函数f(x)=sin(ωx+φ)(ω>0)的图象如图所示,则ω=________. 16.给出下列命题: ①函数y=cos是奇函数; ②存在实数x,使sinx+cosx=2; ③若α,β是第一象限角且α<β,则tanα<tanβ; ④x=是函数y=sin的一条对称轴; ⑤函数y=sin的图象关于点成中心对称. 其中正确命题的序号为__________. 三、解答题 17.(10分)已知方程sin(α-3π)=2cos(α-4π), 求的值. 18.(12分)在△ABC中,sinA+cosA=,求tanA的值. 19.(12分)已知f(x)=sin+,x∈R. (1)求函数f(x)的最小正周期; (2)求函数f(x)的单调减区间; (3)函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样变换得到? 20.(12分)已知函数y=Asin(ωx+φ)(A>0,ω>0)的图象过点P,图象与P点最近的一个最高点坐标为. (1)求函数解析式; (2)求函数的最大值,并写出相应的x的值; (3)求使y≤0时,x的取值范围. 21.(12分)已知cos=cos,sin =-sin,且0<α<π,0<β<π,求α,β的值. 22.(12分)已知函数f(x)=x2+2xtanθ-1,x∈[-1,],其中θ∈. (1)当θ=-时,求函数的最大值和最小值; (2)求θ的取值范围,使y=f(x)在区间[-1,]上是单调函数(在指定区间为增函数或减函数称为该区间上的单调函数). 必修4三角函数综合测试题答案 一、选择题 1. D;2. D;3. D;4. A;5. B 6. D;7. D;8. C;9. A;10. B 11. D;12. C 二、填空题 13. -2;14. 3π;15. ;16. ①④ 三、解答题 17.解 ∵sin(α-3π)=2cos(α-4π), ∴-sin(3π-α)=2cos(4π-α). ∴-sin(π-α)=2cos(-α). ∴sinα=-2cosα. 可知cosα≠0. ∴原式= ===-. 18.解 ∵sinA+cosA=,① 两边平方,得2sinAcosA=-, 从而知cosA<0,∴∠A∈. ∴sinA-cosA= = =.② 由①②,得sinA=,cosA=, ∴tanA==-2-. 19. 解 (1)T==π. (2)由2kπ+≤2x+≤2kπ+,k∈Z, 得kπ+≤x≤kπ+,k∈Z. 所以所求的单调减区间为 (k∈Z). (3)把y=sin2x的图象上所有点向左平移个单位,再向上平移个单位,即得函数f(x)=sin+的图象. 20. 解 (1)由题意知=-=,∴T=π. ∴ω==2,由ω·+φ=0,得φ=-,又A=5, ∴y=5sin. (2)函数的最大值为5,此时2x-=2kπ+(k∈Z). ∴x=kπ+(k∈Z). (3)∵5sin≤0,∴2kπ-π≤2x-≤2kπ(k∈Z). ∴kπ-≤x≤kπ+(k∈Z). 21. 解 cos=cos,即sinα=sinβ① sin=-sin,即cosα=cosβ② ①2+②2得,2=sin2α+3cos2α. 又sin2α+cos2α=1,∴cos2α=.∴cosα=±. 又∵α∈(0,π),∴α=,或α=π. (1)当α=时,cosα=,cosβ=cosα=, 又β∈(0,π),∴β=. (2)当α=时,cosα=-, cosβ=cosα=-, 又β∈(0,π),∴β=. 综上,α=,β=,或α=,β=. 22. 解 (1)当θ=-时, f(x)=x2-x-1=2-. ∵x∈[-1,],∴当x=时,f(x)的最小值为-, 当x=-1时,f(x)的最大值为. (2)f(x)=(x+tanθ)2-1-tan2θ是关于x的二次函数.它的图象的对称轴为x=-tanθ. ∵y=f(x)在区间[-1,]上是单调函数, ∴-tanθ≤-1,或-tanθ≥,即tanθ≥1,或tanθ≤-. ∵θ∈,∴θ的取值范围是∪. 11
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服