收藏 分销(赏)

高中立体几何基础知识点全集图文并茂.doc

上传人:a199****6536 文档编号:4027122 上传时间:2024-07-25 格式:DOC 页数:18 大小:91KB
下载 相关 举报
高中立体几何基础知识点全集图文并茂.doc_第1页
第1页 / 共18页
高中立体几何基础知识点全集图文并茂.doc_第2页
第2页 / 共18页
高中立体几何基础知识点全集图文并茂.doc_第3页
第3页 / 共18页
高中立体几何基础知识点全集图文并茂.doc_第4页
第4页 / 共18页
高中立体几何基础知识点全集图文并茂.doc_第5页
第5页 / 共18页
点击查看更多>>
资源描述

1、 立体几何知识点整理姓名: 一.直线和平面的三种位置关系:1. 线面平行l符号表示:2. 线面相交 符号表示: 3. 线在面内符号表示:二.平行关系:1. 线线平行:方法一:用线面平行实现。mlmll/=方法二:用面面平行实现。mlml /=方法三:用线面垂直实现。若 ml , ,则 ml /。方法四:用向量方法:若向量 和向量 共线且 l 、 m 不重合, 则 ml /。2. 线面平行:方法一:用线线平行实现。/llmml方法二:用面面平行实现。/ll方法三:用平面法向量实现。若 n 为平面 的一个法向 量 , ln 且 l , 则 /l 。3. 面面平行:方法一:用线线平行实现。/ , ,

2、/且相交且相交mlmlmmll方法二:用线面平行实现。/ ,/且相交mlml三.垂直关系:1. 线面垂直:方法一:用线线垂直实现。=lABACAABACABlACl,ml 方法二:用面面垂直实现。 =l l m l m ,2. 面面垂直:方法一:用线面垂直实现。l l方法二:计算所成二面角为直角。 3. 线线垂直:方法一:用线面垂直实现。m l m l 方法二:三垂线定理及其逆定理。PO l OA l PA l 方法三:用向量方法:若向量 和向量 的数量积为 0,则 m l 。 三.夹角问题。 (一 异 面直线所成的角: (1 范围:90, 0( (2求法: 方法一:定义法。步骤 1:平移,使

3、它们相交,找到夹角。步骤 2:解三角形求出角。 (常用到余弦定理 余弦定理:abcb a 2cos 222-+=(计算结果可能是其补角 方法二:向量法。转化为向量的夹角 (计算结果可能是其补角 : =cos(二 线 面角(1定义:直线 l 上任取一点 P (交点除外 ,作 PO 于 O, 连结 AO ,则 AO 为斜线 PA 在面 内 的射影, PAO (图中 为直线 l 与面 所成的角。 (2范围:90, 0当 =0时, l 或 /l 当 =90时, l (3求法: 方法一:定义法。步骤 1:作出线面角,并证明。 步骤 2:解三角形,求出线面角。方法二:向量法 (为平面 的一个法向量 。=,

4、 cos sin = c b (三 二 面角及其平面角(1定义:在棱 l 上取一点 P ,两个半平面内分别作 l 的垂线(射线 m 、 n ,则射线 m 和 n 的夹角 为 二面角 l 的平面角。 (2范围:180, 0 (3求法: 方法一:定义法。 步骤 1:作出二面角的平面角 (三垂线定理 , 并证明。 步骤 2:解三角形,求出二面角的平面角。 方法二:截面法。步骤 1:如图, 若平面 POA 同时垂直于平面 和 , 则交线 (射线 AP 和 AO 的夹角就是二面角。 步骤 2:解三角形,求出二面角。 方法三:坐标法 (计算结果可能与二面角互补 。 步骤一:计算 121212cos n n

5、 n n n n =步骤二:判断 与 12n n 的关系,可能相等或者互补。四.距离问题。 1.点面距。 方法一:几何法。步骤 1:过点 P 作 PO 于 O , 线段 PO 即为所求。 步骤 2:计算线段 PO 的长度。 (直接解三角形;等 体积法和等面积法;换点法 方法二:坐标法。=d cos=2.线面距、面面距均可转化为点面距。 3.异面直线之间的距离 方法一:转化为线面距离。如图, m 和 n 为两条异面直线, n 且/m , 则异面直线 m 和 n 之间的距离可转化为直线 m 与平面 之间的距离。方法二:直接计算公垂线段的长度。 方法三:公式法。如图, AD 是异面直线 m 和 n

6、的公垂线段, /m m ,则异面直线 m 和 n 之间的距离为:cos 2222ab b a c d -=五.空间向量 (一 空间向量基本定理若向量 , , 为空间中不共面的三个向量,则对空 间中任意一个向量 ,都存在唯一的有序实数对z y x 、 、 ,使得 z y x +=。(二 三点共线,四点共面问题 1. A, B , C 三点共线 OA xOB yOC =+,且 1x y +=当 21=y x 时, A 是线段 BC 的 A , B , C 三点共线 = 2. A, B , C , D 四点共面 OA xOB yOC zOD =+,且 1x y z +=当 13x y z =时, A

7、 是 BCD 的 A , B , C , D 四点共面 y x += (三 空间向量的坐标运算1. 已知空间中 A 、 B 两点的坐标分别为:111(, , A x y z , 222(, , B x y z 则:AB =;=B A d , AB =2. 若空间中的向量 111(, , a x y z =, , , (222z y x = 则 a b += a b -=a b = cos a b =六.常见几何体的特征及运算 (一 长 方体1. 长方体的对角线相等且互相平分。2. 若长方体的一条对角线与相邻的三条棱所成的角分别为 、 、 ,则 222cos cos cos=+ 若长方体的一条对

8、角线与相邻的三个面所成的角 分别为 、 、 ,则 222cos cos cos =+ 3. 若长方体的长宽高分别为 a 、 b 、 c ,则体对角线 长为 ,表面积为 ,体积为 。 (二 正 在底面中心。(三 正 棱柱:底面是正多边形的直棱柱。 (四 正 多面体:每个面有相同边数的正多边形,且每个顶点为端点有相同棱数的凸多面体。 (只有五种正多面体 (五 棱 锥的性质:平行于底面的的截面与底面相似,且面积比等于顶点到截面的距离与棱锥的高的 平方比。正棱锥的性质:各侧棱相等,各侧面都是全等 的等腰三角形。(六 体 积:=棱柱 V =棱锥 V (七 球1. 定义:到定点的距离等于定长的点的集合叫球面。 2. 设球半径为 R , 小圆的半径为 r , 小圆圆心为 O 1, 球心 O 到小圆的距离为 d ,则它们三者之间的数量 关系是 。3. 球面距离:经过球面上两点的大圆在这两点间 的一段劣弧的长度。4. 球的表面积公式: 体积公式:

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服