收藏 分销(赏)

四边形辅助线练习题讲课稿.doc

上传人:w****g 文档编号:4020269 上传时间:2024-07-25 格式:DOC 页数:13 大小:215.50KB 下载积分:8 金币
下载 相关 举报
四边形辅助线练习题讲课稿.doc_第1页
第1页 / 共13页
四边形辅助线练习题讲课稿.doc_第2页
第2页 / 共13页


点击查看更多>>
资源描述
此文档仅供收集于网络,如有侵权请联系网站删除 特殊四边形主要包括平行四边形、矩形、菱形、正方形和梯形.在解决一些和四边形有关的问题时往往需要添加辅助线.下面介绍一些辅助线的添加方法. 一、 和平行四边形有关的辅助线作法 平行四边形是最常见的特殊四边形之一,它有许多可以利用性质,为了利用这些性质往往需要添加辅助线构造平行四边形. 1.利用一组对边平行且相等构造平行四边形 例1 如图1,已知点O是平行四边形ABCD的对角线AC的中点,四边形OCDE是平行四边形. 求证:OE与AD互相平分. 说明:当已知条件中涉及到平行,且要求证的结论中和平行四边形的性质有关,可试通过添加辅助线构造平行四边形. 2.利用两组对边平行构造平行四边形 例2 如图2,在△ABC中,E、F为AB上两点,AE=BF,ED//AC,FG//AC交BC分别为D,G.求证:ED+FG=AC. 说明:当图形中涉及到一组对边平行时,可通过作平行线构造另一组对边平行,得到平行四边形解决问题. 3.利用对角线互相平分构造平行四边形 例3 如图3,已知AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证BF=AC. 图3 图4 说明:本题通过利用对角线互相平分构造平行四边形,实际上是采用了平移法构造平行四边形.当已知中点或中线应思考这种方法. 二、和菱形有关的辅助线的作法 和菱形有关的辅助线的作法主要是连接菱形的对角线,借助菱形的判定定理或性质定定理解决问题. 例4 如图5,在△ABC中,∠ACB=90°,∠BAC的平分线交BC于点D,E是AB上一点,且AE=AC,EF//BC交AD于点F,求证:四边形CDEF是菱形. 例5 如图6,四边形ABCD是菱形,E为边AB上一个定点,F是AC上一个动点,求证EF+BF的最小值等于DE长.     图6 说明:菱形是一种特殊的平行四边形,和菱形的有关证明题或计算题作辅助线的不是很多,常见的几种辅助线的方法有:(1)作菱形的高;(2)连结菱形的对角线. 三、 与矩形有辅助线作法 和矩形有关的题型一般有两种:(1)计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题;(2)证明或探索题,一般连结矩形的对角线借助对角线相等这一性质解决问题.和矩形有关的试题的辅助线的作法较少. 例6 如图7,已知矩形ABCD内一点,PA=3,PB=4,PC=5.求 PD的长. 图7 四、与正方形有关辅助线的作法 正方形是一种完美的几何图形,它既是轴对称图形,又是中心对称图形,有关正方形的试题较多.解决正方形的问题有时需要作辅助线,作正方形对角线是解决正方形问题的常用辅助线. 例7如图8,过正方形ABCD的顶点B作BE//AC,且AE=AC,又CF//AE.求证:∠BCF=∠AEB. 说明:本题是一道综合题,既涉及正方形的性质,又涉及到菱形的性质.通过连接正方形的对角线构造正方形AHBO,进一步得到菱形,借助菱形的性质解决问题. 与中点有关的辅助线作法 一、有中线时可倍长中线,构造全等三角形或平行四边形. A B D C 例1.已知:如图,AD为中线,求证:. A B D C E F 类题1.已知:如图,AD为的中线,AE=EF.求证:BF=AC. 二、有以线段中点为端点的线段时,常加倍此线段,构造全等三角形或平行四边形. A P M Q B C 例2.已知:如图,在中,,M为AB中点,P、Q分别在AC、BC上,且于M.求证:. 类题2.已知:的边BC的中点为N,过A的任一直线于D,于E.求证:NE=ND. 三、有中点时,可连结中位线. 例3.如图,中,D、E分别为AB、AC上点,且BD=CE,M、N为BE、CD中点,连MN交AB、AC于P、Q,求证:AP=AQ. A D P B C Q E M N 类题3.已知:如图,E、F分别为四边形ABCD的对角线中点,AB>CD.求证:. A D F E B C 类题4.如图,中,AD是高,CE为中线,,G为垂足,DC=BE.求证:(1)G是CE的中点;(2). A E D G C B 四、有底边中点,连中线,利用等腰三角形“三线合一”性质证题 例4.已知:如图,在中,,AB=AC,D为BC边中点,P为BC上一点,于F,于E.求证:DF=DE. A F E D P C B 类题5.已知:如图,矩形ABCD,E为CB延长线上一点,且AC=CE,F为AE中点,求证:. B D C F E A 六、与梯形中点有关的辅助线:有腰中点时,常见以下三种引辅助线法 A D B C (3) E E A D B C (2) E G A D F B C (1) E 例5.已知:如图,在直角梯形ABCD中,AD∥BC,,M为CD的中点.求证:AM=MB.A B D M C 类题6.已知:梯形ABCD中,AB∥CD,E为BC中点,于F.求证:. 【作业】 1、 已知△ABC和△DBE为等腰直角三角形,∠ABC=∠DBE=90°,A、B、D在同一直线上,M、N、P分别是AD、AC、DE边上的中点,试说明MP与MN的关系并证明。 N M P E D C B A 2、如果上题中A、B、D不在同一直线上,其余条件不变,上述结论是否发生变化?证明结论。 N M P E D C B A 3、平行四边形ABCD,对角线相交于点O,P、E、F分别是AD、OB、OC的中点,AC=2AB。 求证:PE=EF A B C D O E P F 4、等腰梯形ABCD中,DC∥AB,∠AOB=60°,E、F、M分别是OD、OA、BC的中点。 A B C D E F M O 求证:△EFM是等边三角形。 5、如图,在四边形ABCD中,AB=CD,M、N、P、Q分别是AD、BC、BD、AC的中点。求证:MN与PQ互相垂直平分。 A B C D M N P Q 6、如图,在△ABC中,E是AB的中点,CD平分∠ACB,AD⊥CD,垂足为点D,求证:2DE=BC-AC A B C D E M N 7、BD、CE分别为△ABC外角平分线,AM⊥BD于M,AN⊥CE于N,探究MN与AB、BC、AC的关系。 附加题: (1)若将上题中BD改为∠ABC的平分线,其它条件不变,则上题结论是否成立。 (2)若BD、CE分别为∠ABC和∠ACB的平分线,其它条件不变,以上结论是否成立?(画图、证明) C B A C B A 8、△ABC中,AB=AC,∠BAC=,在AB、AC上截取AD、AE,且AD=AE,连结DE。如图1所示,则易证BD=CE,如图2所示,将△ADE逆时针针旋转到如图所示位置,连结BD、CE。 (1)判断BD与CE的数量关系及BD、CE延长线所夹锐角的度数。 B C D E A B C D E A A B C D E B C D E (2)点G、F分别是等腰△ABC、等腰△ADE底边的中点,∠BAC=∠DAE=,点P是线段CD的中点,试探索∠GPF与的关系,并加以证明。 B C D E A P G F 9、我们给出如下定义:有一组相邻内角相等的四边形叫做等邻角四边形.请解答下列问题: (1)写出一个你所学过的特殊四边形中是等邻角四边形的图形的名称; (2)如图1,在△ABC 中,AB=AC,点D在BC上,且CD=CA,点E、F分别为BC、AD的中点,连接EF并延长交AB于点G.求证:四边形AGEC是等邻角四边形; (3)如图2,若点D在△ABC 的内部,(2)中的其他条件不变,EF与CD交于点H.图中是否存在等邻角四边形,若存在,指出是哪个四边形,不必证明;若不存在,请说明理由. 1、在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,顺次连结EF,FG,GH,HE。 (1)请判断四边形EFGH的形状,并给予证明; (2)试添加一个条件,使四边形EFGH是菱形,并说明理由。 2、如图,在四边形ABC中,AB=AD,CB=CD,点M,N,P,Q分别是AB,BC,CD,DA的中点,求证:四边形MNPQ是矩形. 小结:中点四边形: 对角线 的四边形的中点四边形是菱形 对角线 的四边形的中点四边形是矩形 对角线 的四边形的中点四边形是正方形 对角线 的四边形的中点四边形是平行四边形 (1) 顺次连接四边形各边中点所得的四边形是 . (2) 顺次连接平行四边形各边中点所得的四边形是 . (3) 顺次连接矩形各边中点所得的四边形是 . (4) 顺次连接菱形各边中点所得的四边形是 . (5) 顺次连接正方形各边中点所得的四边形是 练习题: 1、顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是( ) A.矩形 B.直角梯形 C.菱形 D.正方形 2、如图,小区的一角有一块形状为等梯形的空地,为了美化小区,社区居委会计划在空地上建一个四边形的水池,使水池的四个顶点恰好在梯形各边的中点上,则水池的形状一定是 A、等腰梯形 B、矩形 C、菱形 D、正方形 3、.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形满足条件的是( ) ①平行四边形 ②菱形 ③等腰梯形 ④对角线互相垂直的四边形 A.①③ B.②③ C.③④ D.②④ 4、顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是 A.菱形 B.对角线互相垂直的四边形 C.矩形 D.对角线相等的四边形 5.如图,在梯形ABCD中,AB∥CD,AD=BC,点E,F,G,H分别是AB,BC,CD,DA的中点,则下列结论一定正确的是( ). A. ∠HGF = ∠GHE B. ∠GHE = ∠HEF C. ∠HEF = ∠EFG D. ∠HGF = ∠HEF 6、如图,依次连结第一个矩形各边的中点得到一个菱形,再依次连结菱形各边的中点得到第二个矩形,按照此方法继续下去。已知第一个矩形的面积为1,则第n个矩形的面积为 。 …… 7、我们把依次连接任意一个四边形各边中点所得的四边形叫做中点四边形.若一个四边形的中点四边形是一个矩形,则四边形可以是 . 8、如图,点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,当四边形ABCD的边至少满足 条件时,四边形EFGH是菱形. A B C D E F G H … A1 A A2 A3 B B1 B2 B3 C C2 C1 C3 D D2 D1 D3 第9题图 9、如图,四边形ABCD中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2……,如此进行下去,得到四边形AnBnCnDn. (1)证明:四边形A1B1C1D1是矩形; (2)写出四边形A1B1C1D1和四边形A2B2C2D2的面积; (3)写出四边形AnBnCnDn的面积; (4)求四边形A5B5C5D5的周长. 10.如图,在四边形ABCD中,E为AB上一点,△ADE和△BCE都是等边三角形,AB、BC、CD、DA的中点分别为P、Q、M、N,试判断四边形PQMN为怎样的四边形,并证明你的结论. 只供学习与交流
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服