收藏 分销(赏)

曲线积分与格林公式总结资料讲解.doc

上传人:a199****6536 文档编号:4015596 上传时间:2024-07-25 格式:DOC 页数:14 大小:461.50KB
下载 相关 举报
曲线积分与格林公式总结资料讲解.doc_第1页
第1页 / 共14页
曲线积分与格林公式总结资料讲解.doc_第2页
第2页 / 共14页
曲线积分与格林公式总结资料讲解.doc_第3页
第3页 / 共14页
曲线积分与格林公式总结资料讲解.doc_第4页
第4页 / 共14页
曲线积分与格林公式总结资料讲解.doc_第5页
第5页 / 共14页
点击查看更多>>
资源描述

1、曲线积分与格林公式总结精品资料 一、 对弧长的曲线积分的概念与性质 曲线形构件的质量: 设一曲线形构件所占的位置在xOy面内的一段曲线弧L上, 已知曲线形构件在点(x, y)处的线密度为m(x, y). 求曲线形构件的质量. 把曲线分成n小段, Ds1, Ds2, , Dsn(Dsi也表示弧长); 任取(xi , hi)Dsi, 得第i小段质量的近似值m(xi , hi)Dsi; 整个物质曲线的质量近似为; 令l=maxDs1, Ds2, , Dsn0, 则整个物质曲线的质量为 . 这种和的极限在研究其它问题时也会遇到. 定义 设L为xOy面内的一条光滑曲线弧, 函数f(x, y)在L上有界.

2、 在L上任意插入一点列M1, M2, , Mn-1把L分在n个小段. 设第i个小段的长度为Dsi, 又(xi, hi)为第i个小段上任意取定的一点, 作乘积f(xi, hi)Dsi, (i=1, 2, , n ), 并作和, 如果当各小弧段的长度的最大值l0, 这和的极限总存在, 则称此极限为函数f(x, y)在曲线弧L上对弧长的曲线积分或第一类曲线积分, 记作, 即. 其中f(x, y)叫做被积函数, L 叫做积分弧段. 设函数f(x, y)定义在可求长度的曲线L上, 并且有界. 将L任意分成n个弧段: Ds1, Ds2, , Dsn, 并用Dsi表示第i段的弧长; 在每一弧段Dsi上任取一

3、点(xi, hi), 作和; 令l=maxDs1, Ds2, , Dsn, 如果当l0时, 这和的极限总存在, 则称此极限为函数f(x, y)在曲线弧L上对弧长的曲线积分或第一类曲线积分, 记作, 即 . 其中f(x, y)叫做被积函数, L 叫做积分弧段. 曲线积分的存在性: 当f(x, y)在光滑曲线弧L上连续时, 对弧长的曲线积分是存在的. 以后我们总假定f(x, y)在L上是连续的. 根据对弧长的曲线积分的定义,曲线形构件的质量就是曲线积分的值, 其中m(x, y)为线密度. 对弧长的曲线积分的推广: . 如果L(或G)是分段光滑的, 则规定函数在L(或G)上的曲线积分等于函数在光滑的

4、各段上的曲线积分的和. 例如设L可分成两段光滑曲线弧L1及L2, 则规定 . 闭曲线积分: 如果L是闭曲线, 那么函数f(x, y)在闭曲线L上对弧长的曲线积分记作 . 对弧长的曲线积分的性质: 性质1 设c1、c2为常数, 则 ; 性质2 若积分弧段L可分成两段光滑曲线弧L1和L2, 则 ; 性质3设在L上f(x, y)g(x, y), 则 . 特别地, 有 二、对弧长的曲线积分的计算法 根据对弧长的曲线积分的定义, 如果曲线形构件L的线密度为f(x, y), 则曲线形构件L的质量为 . 另一方面, 若曲线L的参数方程为x=j(t), y=y (t) (atb),则质量元素为 , 曲线的质量

5、为 . 即 . 定理 设f(x, y)在曲线弧L上有定义且连续, L的参数方程为 x=j(t), y=y(t) (atb), 其中j(t)、y(t)在a, b上具有一阶连续导数, 且j2(t)+y2(t)0, 则曲线积分存在, 且 (ab). 证明(略) 应注意的问题: 定积分的下限a一定要小于上限b. 讨论: (1)若曲线L的方程为y=y(x)(axb), 则=?提示: L的参数方程为x=x, y=y(x)(axb), . (2)若曲线L的方程为x=j(y)(cyd), 则=?提示: L的参数方程为x=j(y), y=y(cyd), . (3)若曲G的方程为x=j(t), y=y(t), z

6、=w(t)(atb), 则=? 提示: . 例1 计算, 其中L是抛物线y=x2上点O(0, 0)与点B(1, 1)之间的一段弧. 解 曲线的方程为y=x2 (0x1), 因此 . 例2 计算半径为R、中心角为2a的圆弧L对于它的对称轴的转动惯量I(设线密度为m=1). 解 取坐标系如图所示, 则. 曲线L的参数方程为 x=Rcosq, y=Rsinq (-aq0是比例常数. 于是 . . 三、两类曲线积分之间的联系 由定义, 得 , 其中F=P, Q, T=cost, sint为有向曲线弧L上点(x, y)处单位切向量, dr=Tds=dx, dy. 类似地有 . 其中F=P, Q, R,

7、T=cosa, cosb, cosg为有向曲线弧G上点(x, y, z)处单们切向量, dr=Tds =dx, dy, dz . 一、格林公式 单连通与复连通区域: 设D为平面区域, 如果D内任一闭曲线所围的部分都属于D, 则称D为平面单连通区域, 否则称为复连通区域. 对平面区域D的边界曲线L, 我们规定L的正向如下: 当观察者沿L的这个方向行走时, D内在他近处的那一部分总在他的左边. 区域D的边界曲线的方向: 定理1设闭区域D由分段光滑的曲线围成, 函数P(x, y)及Q(x, y)在D上具有一阶连续偏导数, 则有 , 其中L是D的取正向的边界曲线. 简要证明: 仅就D即是X型的又是Y型

8、的区域情形进行证明. 设D=(x, y)|j1(x)yj2(x), axb. 因为连续, 所以由二重积分的计算法有 . 另一方面, 由对坐标的曲线积分的性质及计算法有 . 因此 . 设D=(x, y)|y1(y)xy2(y), cyd. 类似地可证 . 由于D即是X型的又是Y型的, 所以以上两式同时成立, 两式合并即得 . 应注意的问题: 对复连通区域D, 格林公式右端应包括沿区域D的全部边界的曲线积分, 且边界的方向对区域D来说都是正向. 设区域D的边界曲线为L, 取P=-y, Q=x, 则由格林公式得 , 或. 例1. 椭圆x=a cosq , y=b sinq 所围成图形的面积A. 分析

9、: 只要, 就有. 解: 设D是由椭圆x=acosq , y=bsinq 所围成的区域. 令, , 则. 于是由格林公式, =pab. 例2 设L是任意一条分段光滑的闭曲线, 证明 . 证: 令P=2xy, Q=x2, 则. 因此, 由格林公式有. (为什么二重积分前有“”号? ) 例3. 计算, 其中D是以O(0, 0), A(1, 1), B(0, 1)为顶点的三角形闭区域. 分析: 要使, 只需P=0, . 解: 令P=0, , 则. 因此, 由格林公式有 . 例4 计算, 其中L为一条无重点、分段光滑且不经过原点的连续闭曲线, L的方向为逆时针方向. 解: 令, . 则当x2+y20时, 有. 记L 所围成的闭区域为D. 当(0, 0)D时, 由格林公式得; 当(0, 0)D时, 在D内取一圆周l: x2+y2=r 2(r0). 由L及l围成了一个复连通区域D 1, 应用格林公式得, 其中l的方向取逆时针方向. 于是 =2p. 解 记L 所围成的闭区域为D. 当(0, 0)D时, 由格林公式得 . 当(0, 0)D时, 在D内取一圆周l: x2+y2=r2(r0). 由L及l围成了一个复连通区域D1, 应用格林公式得, 即, 其中l的方向取顺时针方向. 于是 =2p.分析: 这里, , 当x2+y20时, 有. 仅供学习与交流,如有侵权请联系网站删除 谢谢14

展开阅读全文
相似文档                                   自信AI助手自信AI助手
猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服