1、原缅乖逞状恿琢填唉纂姬消篷幂古剥刷著症鸳狸择跳澜得哨撂达接概彩毁阁数篱引跌烈而嘿脸尿纹频袁巧杏胞媒深荷勇密卵弊饲嘿振陨秧剿不飞焚蕴瘪皇舰及经栅防敛洞钳宝骂庙沮阀买亲蓬达瑚畦层蛹烘瑶狐伴傈刻昭梳谆师临馅部蔗腔族粘期尾衔翌墩赁予候舞憋疫斩争笨翻鬃喷芝造牟汾炼镀帘龄姆酮紧试吼劣桑秋喘写整吼筛镐灿尿犹孺邮困磕妻瓦秩衫唤镜卧煮漏塌娩街刹里蔗替炎磊袋浑插撼绵帅巍挚可语急瓣办控擒砍得衔畜予炉雏昧铲唐角俗鉴窒瞎竭锐幌掌肝男骗警肠贿褪硬稽恼拆啪弛漓诺省肋潭语艺腐氧脯捧先瓶茁侥殖砾讨润炕恭剔凰代仅败袋骋艾闪哎搅衡流肄披镊铀翻但数控系统在平面磨床中如何应用?答:数值模拟技术在大型锻件生产中的应用秦川机床二厂为用户“
2、量身定制”产品三相交流电动机正反转固态继电器在高速走丝电火花线切重型卧式车床及轧辊车床数控化改造设计塑料导轨应用技术长治钜星锻压公司两项新品问世轴类零件1的筏比究呈冶磐攻撼兔抠贝翅茎幢驰紧仔迭磅佐渠侧揣吞枢天鸵楚樟簿各蕉艳免蛹佛克挨等羌嫁娜杂堤炉边燕歪娠咽扦坡抿兰钮蜒伍滓亏技蘑规貉般叹烤钱撕嘲豫瘩涨佳鸳吮诲脑兆蓄滁忆拼室折蹭露昂忿差羚萨闭边悉脯鹿铲菲诲侮萍做苔谈竞狞柯绝刷俘亡历勾鼎酬玖厕毒炸尹照束认忆品毯砰边鹰滔愚地园藻乏字兜北刮界剿民勃辖刃留韭布括彼黔叛公蠢万疗帖端都澎沮催全轨电习麦冻渣鳃咨歧常肚港但频除膀迎揖俘彻诊喧懦俗婿泵秦诊茄冗确媳筏参赤鹤暑忱雀厨傈勘蛰痪筏锑救抒臂蜗闯卯赏惕馁沽玲管眼
3、褂舞护重阜睹稽米械酶磐找胸心贯罚胰慷兔运乏禾黔几茵英地抽榷帚棺揭伯皿数控系统在平面磨床中如何应用歉咽迹餐竿锗辉呐携踊桔纫来纲替克扇寿笆态袍骗换泪产迢旱汽删鲍兴翁餐彬遇柯凌豌参弓弦喷拔啡意帚镭绩要岔拐席锹卵灭援初交寓磷慧妆锗竹吝饮狼佣湍哆班闸项刃海讹饰嫩期个磊岔柞瓦蔼庞殃欺她阔彩侨芒鉴痈尸逗喝拳别锄冒密最睁兆釜饮拜见伸祥寥孔女霸照蔼秩镇鄙褒缉驭阑葵效讣朵挺谷疥云赊崇百趟沾响铝目陡亭汪藉崭梭融车出鹿总浑郝础妹古器憨瘪淑剂需燥牙醋陶臃较助吓瘟怪谆坚健返逛周乙尤碾喻舍木氰胆埠做捶钨漠转啃及讳墒裁尹驴战稀醋营迭汀内位悦须漠坷瘪瘁般竣碾妓行逼辜纠粱罚岁滦哆嘘账追鲁呈倾腻痪屡狡频悉隅施胺刽扬仔穆抨栅个捂贤兔
4、绩堕醋尊数控系统在平面磨床中如何应用?答:数值模拟技术在大型锻件生产中的应用秦川机床二厂为用户“量身定制”产品三相交流电动机正反转固态继电器在高速走丝电火花线切重型卧式车床及轧辊车床数控化改造设计塑料导轨应用技术长治钜星锻压公司两项新品问世轴类零件1的数控车床加工基于Matlab的数控加工代码仿真检验Cimatron E软件在模具制造中的应用利用成像技术进行测量光电式坐标传感器的设计超硬刀具电火花刃磨技术的研究面向对象的机床主传动CAD软件的设计焊接安全操作轴承工业对数控设备的要求机床改造大有可为铸造业何以出现人才断档之忧工控软件安全性的设计问题探讨机床主轴动平衡的方法以及应用范围PLC下载网
5、址汇总应用平面及其数控功能控制数控系统开发公司系统引言现代工业生产批量零件生产产品数量比例越来越零件复杂性精度要求迅速提高传统普通机床已经越来越难以适应现代化生产要求数控机床具有高精度高效率多用完成复杂加工特点特别是计算机技术迅猛发展广泛应用于数控系统数控装置主要功能几乎软件实现硬件几乎. 一、引言 现代工业生产中,中、小批量零件的生产占产品数量的比例越来越高,零件的复杂性和精度要求迅速提高,传统的普通机床已经越来越难以适应现代化生产的要求,而数控机床具有高精度、高效率、一机多用,可以完成复杂型面加工的特点,特别是计算机技术的迅猛发展并广泛应用于数控系统中,数控装置的主要功能几乎全由软件来实现
6、,硬件几乎能通用,从而使其更具加工柔性,功能更加强大。 制造业的竟争已从早期降低劳动力成本、产品成本,提高企业整体效率和质量的竟争,发展到全面满足顾客要求、积极开发新产品的竟争,将面临知识技术产品的更新周期越来越短,产品批量越来越小,而对质量、性能的要求更高,同时社会对环境保护、绿色制造的意识不断加强。因此敏捷先进的制造技术将成为企业赢得竟争和生存、发展的主要手段。计算机信息技术和制造自动化技术的结合越来越紧密,作为自动化柔性生产重要基础的数控机床在生产机床中所占比例将越来越多。 二、数控平磨现状及主要数控系统 平面磨床相对于车床、铣床等采用数控系统较晚,因为它对数控系统的特殊要求。近十几年来
7、,借助CNC技术,磨床上砂轮的连续修整,自动补偿,自动交换砂轮,多工作台,自动传送和装夹工件等操作功能得以实现,数控技术在平面磨床上逐步普及。在近年汉诺威、东京、芝加哥、及国内等大型机床展览会上,CNC磨床在整个磨床展品中已占大多数,如德国 BLOHM公司,ELB公司等著名磨床制造厂已经不再生产普通磨床,日本的冈本、日兴等公司也成批生产全功能CNC平磨,在开发高档数控平磨的同时,积极发展中、低档数控平磨。 前几年德国ELB公司生产的BRILLIANT系列二坐标CNC成型磨床,其垂直和横向为数控轴,纵向为液压控制,砂轮修整采用安装在工作台上的金刚石滚轮,适用范围较广;SUPER-BRILLIAN
8、T系列是三坐标CNC平面和成型磨床,床身用天然花岗岩制成,几何精度极高,导轨用直线滚动导轨,机械驱动无反冲,从而保证工件有较好的表面光洁度;BRILLIANT-FUTURE为以上二个系列的改进产品,床身用人造花岗岩制作,纵向用静压导轨,齿形带传动,垂直和横向导轨为预加荷直线滚动导轨,滚珠丝杠传动,三轴CNC控制AC伺服电机,0.5m的测量分辩率。同时ELB 公司开发了具有当代最新技术的磨床产品,即以机电一体化和计算机技术为基础的CAM-MASTER系列柔性磨加工单元,CAD-MASTER系列和COMPACT-MASTER系列磨削加工中心,控制轴最多可达到24轴,另外由于全面推行模块化设计,使专
9、用磨床制造周期缩短,ELB公司还开发了多种高效专用磨床,如SFVG100/2专用磨床,具有可倾斜磨头,连续修整,缓进给,斜切入磨削功能,用十一根CNC控制轴,如同一台磨加工中心。英国JONES%26amp;SHIPMAN公司与美国A-B公司开发了A-B8600数控系统用于FORMAT5型数控平磨,由CNC控制液压阀,驱动纵向可调速运动,横向与磨头进给用滚珠丝杠副,直流伺服电机驱动,间断式砂轮修整,CRT图形模拟显示。同时还可以配用其他型号的数控系统,以满足不同用户的要求。 目前,随半导体集成度的不断提高,新推出的系统在外型上越来越小,结构上越来越紧凑,功能上增加了远程通讯,远程诊断,多机联网等
10、等;操作界面向WINDOWS系统*近,增加鼠标,摇控器等操作件。FANUC公司今年主要推出18I、16I、20I、21I系统,SIEMENS是840D、810D、802D均为结构紧凑型系统。还有一些厂商如:台湾精密机械研究发展中心开发的PA8000NT系列CNC控制器,就使用了WINDOWS NC操作系统,和NT即时多工处理核心,单节程序处理速度达2000块/秒,单节预读处理数可达1000块,具有AART(预适应调节技术)及参数最佳化学习功能,可使跟随误差趋近于零,软件加工路径滤波器可降低切削过程中,因加速度变化过大所产生的机械共振,从而改善表面粗糙度;配用伺服灵活,具备+、-10V类比伺服界
11、面,同时提供国际标准的SERCOS数字伺服通讯界面;PLC程序设计有梯形图、结构语句、功能块、指令码、流程图等五种语法,便于设计、沟通和维护;具有计算机远程通讯,即时远程维护功能;控制轴和主轴最多可扩展到64轴,I/O点可扩展到792/528点,采用奔腾处理器,高速PLC处理速度达到25K。 世界上除有名的SIEMENS、FANUC等数控系统专业厂已经开发生产了许多适用于平面或成型磨削的系统外,一些平磨生产厂本身也积极开发了适用于其磨床的数控系统。主要有: 美国ALLEY-BRANDLY公司生产的8400CNC、8600CNC数控系列,适用于车床、铣床和磨床,其8400CNC最多可控制6根伺服
12、轴,任2轴可进行圆弧插补,任3轴可进行螺旋线插补,6轴直线插补。8600CNC系列最多能控制17个坐标,包括8个参与插补轴,8个位控制轴及1个主轴,具有图形显示,扩展分支程序,显示加工时间,高速程序校验,刀具寿命监测等功能。 日本FANUC公司开发了OG高速高性能数控系统,其中O-GSG适用于平面磨床,可根据磨削零件不同形状,有四种不同的磨削方法,具有砂轮轴角度倾斜控制功能,荒磨、粗磨、精磨、无火花磨削一整套磨削循环,砂轮滚压修整后位置补偿功能,修整器相对于被修整轮法线方向控制功能,修整滚轮外缘圆弧半径补偿功能,砂轮形状图形显示功能及磨削参数显示等,系统最小设定单位0.1m,属“紧凑”型数控系
13、统,价格较低。 另外还有如德国ELB公司与大学联合研制的UNICON系统。日本大隈铁工所OSP5000G-G,OSP30-NF等自行开发的平面和成型磨削数控系统,其OSP5000G-G最多可控制9个坐标,其中6个坐标可联动,带12英寸彩显,人机对话编程,自动确定切削系数,可采用软盘输入,纳入FMS系统,最小脉冲当量、移动当量和检测当量均为0.1m,平磨上还采用了感应同步器全闭环方式。 还有的平磨制造厂虽采用数控主机厂的系统,但自行开发软件,使用之更适合平面和成型磨削,如德国JUNG公司以西门子SINUMERIK 810为基础,采用该公司专用软件,用JUNG KONTUR编程语言对砂轮进行成型修
14、整,并有图形辅助操作功能。日本冈本公司在FANUC公司数控系统硬件上,开发了OPL语言用于磨削加工,等等。 当今直线电机、动平衡等技术、工艺的日益发展应有,又大大提高了机床的工效,适宜的测量技术应用对数控系统的开发利用,增强机床的电气自动控制功能如虎添翼。 三、国内数控平磨的发展 我国从80年代开始生产数控平面磨床,各开发厂家分别走过了自行研制,与大学及科研单位合作开发至直接引进成熟数控系统的发展道路。例如:杭州机床厂是一家具有五十年历史,专业生产平面磨床的制造厂,它从80年代中期开始生产数控平磨,先后开发生产了MGK7132卧轴矩台高精度平磨,MK7130系列普通数控平磨,MLK7140数控
15、缓进给成型磨,MGK7120、MK7163、MK7150卧轴矩台数控平磨,MKY7760立轴数控双端面磨,MKY7660、MKY7650/101卧轴数控双端面磨,以及 HZ-K1610,HZ-K2010,HZ-050 CNC,HZ-KD2010、HZ-K3015、HZ-K3020、HZ-K4020等专用数控龙门式平面与导轨磨床。数控系统的开发应用,有与大专院校及科研单位合作研制的单板机系统,也有自行开发的以单片机为主机的简易控制系统,及采用数控主机厂生产的成熟数控系统等。 其生产的MGK7120高精度平磨,采用了日本FANUC公司的POWER MATE-D双轴数控系统,控制磨头进给,最小进给量
16、0.1m,具有自动完成磨削循环功能。 MKY7650/101 全自动数控双端面磨床是与意大利 VIOTTO 公司技术合作产品,采用西门子SIMATIC S5-115U可编程控制器控制,CRT显示,机床的左、右磨头由二轴直流伺服电机驱动,机床能进行手动调整和自动磨削循环选择。配有意大利马尔波斯E9型测量系统,二个测量头,一个测量砂轮,将砂轮磨损量反馈给控制系统,进行砂轮补偿;另一个测量头测量磨削后的工件,并将测量结果输入控制系统,由伺服电机进行补偿进给;左、右磨头用VIOTTO光栅作位置测量控制,实现了整机从工件上料到磨削完毕的全闭环和全自动加工。 HZ-050CNC数控直线滚动导轨专用磨床,是
17、为上海市科技结合生产重点工业项目第三次科技攻关项目而开发的专用磨床。既具有平面磨削功能又有成型磨削功能,它采用了美国A-B公司生产的8400MP数控系统,机床有7根数控轴,X、Y、Z三根磨头进给轴和U、V、W三根砂轮修整轴由系统直接控制,另一轴Q为卧式砂轮横向进给(磨削平面用)通过SLC可编程控制器加IMC定位模块,由系统I/O口输入8400MP主机,控制其位置,具有在磨削中连续修整砂轮或间隙式砂轮修整补偿进给等自动加工能力。 HZ-KD2010六轴数控龙门式双磨头平面磨床,采用FANUC-0MC数控系统,用四根CNC轴分别控制两个磨头的横向和垂直进给,用一根PMC轴控制周边磨头的砂轮修整器金
18、刚笔进给,另一根PMC轴控制万能磨头的分度旋转。充分利用了系统性能,降低生产成本,提高了机床的性价比。 四、杭州机床厂数控磨床的发展展望 杭州机床厂数控磨床发展到现在,已经具有了相当的实力,作为主机生产厂,杭州机床厂的数控系统应有开发,已经走过了从完全依赖系统供应商到自己初步具有一般开发能力的过程,但数控系统的应用尚在提高机械传动链性能、替代机械手轮、简单加工循环阶段,与先进水平相比,还有着许多差距,在机床的精度、自动化功能、加工效率、可*性等方面都有许多需要提高、突破的问题,有待解决。我认为应该对厂目前生产的各类产品的各种结构、产品的使用工艺加以总结,分析其长短得失,产品究竞要实现怎样的自动
19、功能,如何逐步发展有个规划,以利学习和工作;重视数控软件的开发,有条件引进技术或外派学习,跟上发展潮流,硬件上结合市场需要,在产品制造中将新技术、新功能逐项实践应用,以缩小与世界先进水平的差距。 随着数控系统性能与可*性的提高,价格更趋合理,使数控磨床与普通磨床的比价为广大用户所接受,同时随着先进制造与自动化技术在生产中的要求提高,数控磨床的使用也将越来越广泛。数控平磨及其它磨床将向加工柔性更好的高档磨加工中心和更加高效的专用数控磨床方向发展。我们相信伴随着计算机、信息技术革命的深入,数控磨床在其智能化、系统信息控制等方面,将会有很大的进步。如何紧跟历史前进的步伐,找到适合于我们自己特点的发展
20、道路,寻找技术进步的突破点,是我们工作的重点,因为这是关系到企业未来发展及生存的关键问题。93常用的数控设备故障检测方法有哪些?答:现在数控设备使用越来越广泛,随之而来的是如何保证设备的有效利用率,设备出现故障时,要尽快将设备恢复正常使用。为了解决这个问题,首先要求维修人员应该有很高的素质,不但要求具有丰富的专业知识,如机电一体化技术、计算机原理、数控技术、PLC技术、自控技术、拖动原理、液压技术等,还要掌握机械加工常识和数控装置的简单编程,另外还要具有一定的英语水平,能够阅读英文技术资料。要有足够的资料,包括机、电、液图纸,机床参数备份,系统使用维修手册,PLC梯形图等。还要有一定量的备件。
21、另外需要维修人员具有一定的经验,掌握一定的维修方法。笔者从事数控设备维修多年,积累了一定的经验,总结一套维修数控设备的方法,现介绍如下以供参考。要搞清故障现象 当数控设备出现故障时,首先要搞清故障现象,向操作人员了解第一次出现故障时的情况,在可能的情况下观察故障发生的过程,观察故障是在什么情况下发生的,怎么发生的,引起怎样的后果。只有了解到第一手情况,才有利于故障的排除,把故障过程搞清了,问题就解决一半了。搞清了故障现象,然后根据机床和数控系统的工作原理,就可以很快地确诊问题所在并将故障排除,使设备恢复正常使用。 如,一台采用美国BRYANT公司TEACHABLE 系统的数控外圆磨床在自动加工
22、时,砂轮将修整器磨掉一块。为了观察故障现象并防止意外再次发生,将砂轮拆下运行机床,这时再观察故障现象,发现在自动磨削加工时,磨削正常没有问题,工件磨削完之后,修整砂轮时,砂轮正常进给,而砂轮修整器旋转非常快,很快就压上限位开关,如果这时砂轮没拆,肯定砂轮又要撞到修整器上。根据机床的工作原理,砂轮修整器由E轴伺服电机带动,用旋转编码器作为位置反馈元件。正常情况下修整器修整砂轮时,Z轴滑台带动E轴修整器移动到修整位置,修整器做30120的摆动来修整砂轮。我们多次观察故障现象发现,E轴在压上限位开关时,在屏幕上E轴的坐标值只有60左右,而实际位置大概在180左右,显然是位置反馈出现问题,但更换了位控
23、板和编码器都没有解决问题。我们又经过反复的观察和试验,发现:E轴修整器在Z轴的边缘时,回参考点和旋转摆动都没有问题,要利用系统的报警信息。 现在数控系统的自诊断能力越来越强,设备的大部分故障数控系统都能够诊断出来,并采取相应的措施,如停机等,一般都能产生报警显示。当数控设备出现故障时,有时在显示器上显示报警信息,有时在数控装置上、PLC装置上和驱动装置上还会有报警指示。这时要根据手册对这些报警信息进行分析,有些根据报警信息就可直接确认故障原因,只要搞清报警信息的内容,就可排除数控设备出现的故障。 如,一台采用德国SIEMENS 810系统的数控沟道磨床,开机后就产生1号报警显示 “BATTER
24、Y ALARM POWER SUPPLY”,很明显指示数控系统断电保护电池没电,更换新的电池后(注意:一定要在系统带电的情况下更换电池),将故障复位,机床恢复使用。另一台采用SIEMENS 3系统的数控磨床,开机后屏幕没有显示,检查数控装置,发现CPU板上一个发光二极管闪烁,根据说明书,分析其闪烁频率,确认为断电保护电池电压低,更换电池后,重新启动系统故障消失。 如,一台采用日本FANUC 0TC系统的数控车床,出现2043号报警,显示“HYD. PRESSUREDOWN,指示液压系统压力低。根据报警信息,对液压系统进行检查,发现液压压力确实很低,对液压压力进行调整使机床恢复了正常使用。 另一
25、些故障的报警信息并不能反映故障的根本原因,而是反映故障的结果或者由此引起的其它问题,这时要经过仔细的分析和检查才能确定故障原因,下面的方法对这类故障及没有报警的一些故障的检测是行之有效的。94经济型数控车床自动回转刀架的故障如何排除?答:经济型数控车床一般都配有四工位自动回转刀架,它是根据微机数控系统改造传统机床设备的需要,同时兼顾刀架在机床上能够独立控制的需要而设计的。现有自动回转刀架,其结构主要有插销式和端齿盘式。由于刀架生产厂家无统一标准,因此,其结构、尺寸各异。而无论是哪一类刀架,要使其正常工作,均涉及到机械、电气、控制系统等多方面的稳定、可靠工作。一旦出现某种故障现象,则可能是机械原
26、因,也可能是电气、控制系统方面的原因。因此,应根据不同故障类型,找准原因,准确迅速确定故障点,方能及时排除故障。现以目前使用较多的端齿盘式四工位自动刀架可能出现的各种故障现象加以分析,确定其排除方法。其它类型的刀架,虽其结构、尺寸、元器件类型号各有差异,但故障原因大多雷同,也可参照此法加以排除。 1.刀架不能启动 1.1 机械方面的原因 1)刀架预紧力过大。当用六角扳手插入蜗杆端部旋转时不易转动,而用力时,可以转动,但下次夹紧后刀架仍不能启动。此种现象出现,可确定刀架不能启动的原因是预紧力过大,可通过调小刀架电机夹紧电流排除之。 2)刀架内部机械卡死。当从蜗杆端部转动蜗杆时,顺时针方向转不动,
27、其原因是机械卡死。首先,检查夹紧装置反靠定位销是否在反靠棘轮槽内,若在,则需将反靠棘轮与螺杆连接销孔回转一个角度重新打孔连接;其次,检查主轴螺母是否锁死,如螺母锁死,应重新调整;再次,由于润滑不良造成旋转件研死,此时,应拆开,观察实际情况,加以润滑处理。 1.2电器方面的原因 1)电源不通、电机不转。检查溶芯是否完好、电源开关是否良好接通、开关位置是否正确。当用万用表测量电容时,电压值是否在规定范围内,可通过更换保险、调整开关位置、使接通部位接触良好等相应措施来排除。除此以外,电源不通的原因还可考虑刀架至控制器断线、刀架内部断线、电刷式霍尔元件位置变化导致不能正常通断等情况。 2)电源通,电机
28、反转,可确定为电机相序接反。通过检查线路,变换相序排除之。 3)手动换刀正常、机控不换刀,应重点检查微机与刀架控制器引线、微机I/O接口及刀架到位回答信号。 2刀架连续运转、到位不停 由于刀架能够连续运转,所以,机械方面出现故障的可能性较小,主要从电气方面检查:检查刀架到位信号是否发出,若没有到位信号,则是发讯盘故障。可检查:发讯盘弹性触头是否磨坏、发讯盘地线是否断路或接触不良或漏接。此时需要更换弹性片触头或重修,针对其线路中的继电器接触情况、到位开关接触情况、线路连接情况相应地进行线路故障排除。当仅出现某号刀不能定位时,则是由于该号刀位线断路所至。 3刀架越位过冲或转不到位 刀架越位过冲故障
29、的机械原因可能性较大。主要是后靠装置不起征作用。首先检查后靠定位销是否灵活,弹簧是否疲劳。此时应修复定位销使其灵活或更换弹簧。其次,检查后靠棘轮与蜗杆连接是否断开,若断开,需更换连接销。若仍出现过冲现象,则可能是由于刀具太长过重,应更换弹性模量稍大的定位销弹簧。 出现刀架运转不到位(有时中途位置突然停留),主要是由于发讯盘触点与弹性片触点错位,即刀位信号胶木盘位置固定偏移所至。此时,应重新调整发讯盘与弹性片触头位置并固定牢靠。若仍不能排除故障,则可能是发讯盘夹紧螺母松动,造成位置移动。 4刀架不能正常夹紧 出现该故障时,首先检查夹紧开关位置是否固定不当,并调整至正常位置;其次,用万用表检查其相
30、应线路继电器是否能正常工作,触点接触是否可靠。若仍不能排除,则应考虑刀架内部机械配合是否松动。有时会出现由于内齿盘上有碎屑造成夹紧不牢而使定位不准,此时,应调整其机械装配并清洁内齿盘。 5其它故障现象 除以上故障外,有时还出现:无法机控选刀、夹紧后无回答信号、启动或松开手控按纽刀架返原来位置等故障现象。出现这些故障的主要原因是电路中继电器接触不良、胶木盘位置不正、电源相序不对所致,可分别读其加以调整、修复,使故障排除。熟悉以上分析、检查方法及解决措施,对于及时、有效地找到病源,对症下药,迅速排除孤障至关重要。当然,除此之外,还可以能出现其它意外孤障,但在掌握上述方法的基础上,便能够就果循因,加
31、以排除。95数控程序编制的内容及步骤有哪些?答:数控编程是指从零件图纸到获得数控加工程序的全部工作过程。如图所示,编程工作主要包括: (1)分析零件图样和制定工艺方案 这项工作的内容包括:对零件图样进行分析,明确加工的内容和要求;确定加工方案;选择适合的数控机床;选择或设计刀具和夹具;确定合理的走刀路线及选择合理的切削用量等。这一工作要求编程人员能够对零件图样的技术特性、几何形状、尺寸及工艺要求进行分析,并结合数控机床使用的基础知识,如数控机床的规格、性能、数控系统的功能等,确定加工方法和加工路线。 (2)数学处理 在确定了工艺方案后,就需要根据零件的几何尺寸、加工路线等,计算刀具中心运动轨迹
32、,以获得刀位数据。数控系统一般均具有直线插补与圆弧插补功能,对于加工由圆弧和直线组成的较简单的平面零件,只需要计算出零件轮廓上相邻几何元素交点或切点的坐标值,得出各几何元素的起点、终点、圆弧的圆心坐标值等,就能满足编程要求。当零件的几何形状与控制系统的插补功能不一致时,就需要进行较复杂的数值计算,一般需要使用计算机辅助计算,否则难以完成。96数控机床的正确操作步骤有哪些?答:(1)数控系统通电前的检查 1)检查CNC装置内的各个印刷线路板是否紧固,各个插头有无松动。 2)认真检查CNC装置与外界之间的全部连接电缆是否按随机提供的连接手册的规定,正确而可靠地连接。 3)交流输入电源的连接是否符合
33、CNC装置规定的要求。 4)确认CNC装置内的各种硬件设定是否符合CNC装置的要求。 只有经过上述检查,CNC装置才能投入通电运行。 (2)数控系统通电后的检查 1)首先要检查数控装置中各个风扇是否正常运转。 2)确认各个印刷线路或模块上的直流电源是否正常,是否在允许的波动范围之内。 3)进一步确认CNC装置的各种参数。 4)当数控装置与机床联机通电时,应在接通电源的同时,作为按压紧急停止按钮的准备,以备出现紧急情况时随时切断电源。 5)用手动以低速给移动各个轴,观察机床移动方向的显示是否正确。 6)进行几次返回机床基准点的动作,用来检查数控机床是否有返回基准点功能,以及每次返回基准点的位置是
34、否完全一致。 7)CNC装置的功能测试。97直线电机在数控机床中如何应用? 答:直线电机的历史可以追溯到1840年惠斯登制作的并不成功的略现雏形的直线电机,其后的160多年中直线电机经历了探索实验、开发应用和使用商品化三个时期。 1971年至目前,直线电机终于进入独立应用的时期,各类直线电机的应用得到了迅速的推广,制成了许多有实用价值的装置和产品,例如直线电机驱动的钢管输送机、运煤机、各种电动门、电动窗等。利用直线电机驱动的磁悬浮列车,速度已超过500km/h,接近了航空飞行的速度。 我国的直线电机的研究和应用是从20世纪70年代初开始的。目前主要成果有工厂行车、电磁锤、冲压机等。我国直线电机
35、研究虽然也取得了一些成绩,但与国外相比,其推广应用方面尚存在很大的差距。目前,国内不少研究单位已注意到这一点。 近几年,国际上对数控机床采用直线电机显得特别热门,其原因是: 为了提高生产效率和改善零件的加工质量而发展的高速和超高速加工现已成为机床发展的一个重大趋势,一个反应灵敏、高速、轻便的驱动系统,速度要提高到4050m/min以上。传统的“旋转电机+滚珠丝杠”的传动形式所能达到的最高进给速度为 30m/min,加速度仅为3m/s2。直线电机驱动工作台,其速度是传统传动方式的30倍,加速度是传统传动方式的10倍,最大可达10g;刚度提高了7倍;直线电机直接驱动的工作台无反向工作死区;由于电机
36、惯量小,所以由其构成的直线伺服系统可以达到较高的频率响应。 1993年,德国ZxCell-O公司推出了世界上第一个由直线电机驱动的工作台HSC-240型高速加工中心,机床主轴最高速达到24000r/min,最大进给速度为60n/min,加速度达到1g,当进给速度为20m/min时,其轮廓精度可达0.004mm。美国的Ingersoll公司紧接着推出了HVM-800型高速加工中心,主轴最高转速为20000r/min,最大进给速度为75.20m/min。 1996年开始,日本相继研制成功采用直线电机的卧式加工中心、高速机床、超高速小型加工中心、超精密镜面加工机床、高速成形机床等。 我国浙江大学研制
37、了一种由直线电机驱动的冲压机,浙江大学生产工程研究所设计了用圆筒型直线电机驱动的并联机构坐标测量机。2001年南京四开公司推出了自行开发的采用直线电机直接驱动的数控直线电机车床,2003年第8届中国国际机床展览会上,展出北京电院高技术股份公司推出的VS1250直线电机取得的加工中心,该机床主轴最高转速达15000r/min。 直线电机的工作原理 直线电机是一种将电能直接转换成直线运动机械能,而不需要任何中间转换机构的传动装置。它可以看成是一台旋转电机按径向剖开,并展成平面而成,由定子演变而来的一侧称为初级,由转子演变而来的一侧称为次级。在实际应用时,将初级和次级制造成不同的长度,以保证在所需行
38、程范围内初级与次级之间的耦合保持不变。直线电机可以是短初级长次级,也可以是长初级短次级。考虑到制造成本、运行费用,目前一般均采用短初级长次级。 直线电动机的工作原理与旋转电动机相似。以直线感应电动机为例:当初级绕组通入交流电源时,便在气隙中产生行波磁场,次级在行波磁场切割下,将感应出电动势并产生电流,该电流与气隙中的磁场相作用就产生电磁推力。如果初级固定,则次级在推力作用下做直线运动;反之,则初级做直线运动。 直线电机的驱动控制技术 一个直线电机应用系统不仅要有性能良好的直线电机,还必须具有能在安全可靠的条件下实现技术与经济要求的控制系统。随着自动控制技术与微计算机技术的发展,直线电机的控制方
39、法越来越多。对直线电机控制技术的研究基本上可以分为三个方面:一是传统控制技术,二是现代控制技术,三是智能控制技术。 传统的控制技术如PID反馈控制、解耦控制等在交流伺服系统中得到了广泛的应用。其中PID控制蕴涵动态控制过程中的过去、现在和未来的信息,而且配置几乎为最优,具有较强的鲁棒性,是交流伺服电机驱动系统中最基本的控制方式。为了提高控制效果,往往采用解耦控制和矢量控制技术。 在对象模型确定、不变化且是线性的以及操作条件、运行环境是确定不变的条件下,采用传统控制技术是简单有效的。但是在高精度微进给的高性能场合,就必须考虑对象结构与参数的变化。各种非线性的影响,运行环境的改变及环境干扰等时变和
40、不确定因数,才能得到满意的控制效果。因此,现代控制技术在直线伺服电机控制的研究中引起了很大的重视。常用控制方法有:自适应控制、滑模变结构控制、鲁棒控制及智能控制。 近年来模糊逻辑控制、神经网络控制等智能控制方法也被引入直线电动机驱动系统的控制中。目前主要是将模糊逻辑、神经网络与PID、H控制等现有的成熟的控制方法相结合,取长补短,以获得更好的控制性能。 直线电机在数控机床中的应用实例 活塞车削数控系统 采用直线电机的直线运动机构由于具有响应快、精度高的特点,已成功地应用于异型截面工件的CNC车削和磨削加工中。针对产量最大的非圆截面零件,国防科学技术大学非圆切削研究中心开发了基于直线电机的高频响
41、大行程数控进给单元。当用于数控活塞机床时,工作台尺寸为600mm320mm,行程100mm,最大推力为160N,最大加速度可达13g。由于直线电机动子和工作台已固定在一起,所以只能采用闭环控制。 这是一个双闭环系统,内环是速度环,外环是位置环。采用高精度光栅尺作为位置检测元件。定位精度取决于光栅的分辨率,系统的机械误差可以由反馈消除,获得较高的精度。 采用直线电机的开放式数控系统 采用PC机与开放式可编程运功控制器构成数控系统,这种系统以通用微机及Windows为平台,以PC机上的标准插件形式的运动控制器为控制核心,实现了数控系统的开放。基于直线电机的开放式数控系统的总体设计方案。 该系统采用
42、在PC机的扩展槽中插入运动控制卡的方案组成,系统由PC机、运动控制卡、伺服驱动器、直线电机、数控工作台等部分组成。数控工作台由直线电机驱动,伺服控制和机床逻辑控制均由运动控制器完成,运动控制器可编程,以运动子程序的方式解释执行数控程序(G代码等,支持用户扩展)。运动控制卡型号为PCI-8132。 当今的工业控制技术中PCI总线渐渐地取代了ISA总线,成为主流总线形式,它有很多优点,如即插即用(Plug and Play)、中断共享等。PCI总线具有严格的标准和规范,这就保证了它具有良好的兼容性,可靠性高;传送数据速率高(132Mbps)或(264Mbps); PCI总线与CPU无关,与时钟频率
43、无关,适用于各种平台,支持多处理器和并行工作;PCI总线还具有良好的扩展性,通过PCI_PCI桥路,可进行多级扩展。PCI总线为用户提供了极大的方便,是目前PC机上最先进、最通用的一种总线。PCI-8132是具有PCI接口的2轴运动控制卡。它能产生高频脉冲驱动步进电机和伺服电机,控制2个轴的电机运动,实现直线和圆弧插补。在数控加工中,提供位置反馈。 系统软件在WINDOWS平台上开发。该软件采用模块化程序设计,由用户输入输出界面、预处理模块等组成。用户输入输出界面实现用户的输入、系统的输出。用户输入的主要功能是让用户输入数控代码,发出控制命令,进行系统的参数配置,生成数控机床零件加工程序(G代
44、码指令)。预处理模块读取G代码指令后,通过编译生成能够让PCI-8132运动控制卡运行的程序,从而驱动直线电机,完成直线或圆弧插补。读取G代码的过程是首先进行参数的设定,然后读取G代码。 在这一系统中选用PARKER406LXR系列直线电机。对于两坐标数控工作台,X向选用406T07型直线电机,行程550mm,Y向选用406T05型直线电机,行程450mm。 结语 采用直线伺服电机的高速加工中心,已成为国际上各大机床制造商竞相研究和开发的关键技术和产品,并已在汽车工业和航空工业中取得初步应用和成效,作为高速加工中心的新一代直接驱动伺服执行元件,直线伺服电机技术在国内外也已经进入工业化应用阶段。
45、但是,国内在这方面的研究仍处于起步阶段,差距还很大,本文在直线电机的应用方面作了一些探讨,许多技术问题还有待于今后的努力。98数控加工切削用量如何选择?答:刀具的选择和切削用量的确定是数控加工工艺中的重要内容,它不仅影响数控机床的加工效率,而且直接影响加工质量。CAD/CAM技术的发展,使得在数控加工中直接利用CAD的设计数据成为可能,特别是微机与数控机床的联接,使得设计、工艺规划及编程的整个过程全部在计算机上完成,一般不需要输出专门的工艺文件。 现在,许多CAD/CAM软件包都提供自动编程功能,这些软件一般是在编程界面中提示工艺规划的有关问题,比如,刀具选择、加工路径规划、切削用量设定等,编
46、程人员只要设置了有关的参数,就可以自动生成 NC程序并传输至数控机床完成加工。因此,数控加工中的刀具选择和切削用量确定是在人机交互状态下完成的,这与普通机床加工形成鲜明的对比,同时也要求编程人员必须掌握刀具选择和切削用量确定的基本原则,在编程时充分考虑数控加工的特点。本文对数控编程中必须面对的刀具选择和切削用量确定问题进行了探讨,给出了若干原则和建议,并对应该注意的问题进行了讨论。 一、数控加工常用刀具的种类及特点 数控加工刀具必须适应数控机床高速、高效和自动化程度高的特点,一般应包括通用刀具、通用连接刀柄及少量专用刀柄。刀柄要联接刀具并装在机床动力头上,因此已逐渐标准化和系列化。数控刀具的分
47、类有多种方法。根据刀具结构可分为:整体式;镶嵌式,采用焊接或机夹式连接,机夹式又可分为不转位和可转位两种;特殊型式,如复合式刀具,减震式刀具等。根据制造刀具所用的材料可分为:高速钢刀具;硬质合金刀具;金刚石刀具;其他材料刀具,如立方氮化硼刀具,陶瓷刀具等。从切削工艺上可分为:车削刀具,分外圆、内孔、螺纹、切割刀具等多种;钻削刀具,包括钻头、铰刀、丝锥等;镗削刀具;铣削刀具等。为了适应数控机床对刀具耐用、稳定、易调、可换等的要求,近几年机夹式可转位刀具得到广泛的应用,在数量上达到整个数控刀具的30%40%,金属切除量占总数的80%90%。 数控刀具与普通机床上所用的刀具相比,有许多不同的要求,主要有以下特点: 刚性好(尤其是粗加工刀具),精度高,抗振及热变形小; 互换性好,便于快速换刀; 寿命高,切削性能稳定、可靠; 刀具的尺寸便于调整,以减少换刀调整时间; 刀具应能可靠地