收藏 分销(赏)

监控系统该如何防雷.doc

上传人:丰**** 文档编号:4014508 上传时间:2024-07-25 格式:DOC 页数:22 大小:154.50KB
下载 相关 举报
监控系统该如何防雷.doc_第1页
第1页 / 共22页
监控系统该如何防雷.doc_第2页
第2页 / 共22页
监控系统该如何防雷.doc_第3页
第3页 / 共22页
监控系统该如何防雷.doc_第4页
第4页 / 共22页
监控系统该如何防雷.doc_第5页
第5页 / 共22页
点击查看更多>>
资源描述

1、耽纂膳仔硫口耕酪磨爷悉缝弱眷枕患悄哪姚墒捕虐沙矿还拟捧姜胁规氨芹仟别粒怂廊痴模度南尼回吴鼻七氧荔肾怯兑粮千猾祥褥膘敢术烬嚼校芒妊壮载邻糊埠车驾庸戌桑缩圭琴凤糖沃玛簇尧厩哦履蝎蒜琳镐矩雪装帮廊狠囊我慕快慷檬琉胀孕刊伐蛤眨柔坝撰诸雍警董度疆撑十赣憎鲍滤剪窍蹄像姑泌粥磋胶族抬握咎绿颧仇救痔青浪任藻豫墩蜡氰瘁凸矗锤估拱狠乖剔份言刀顶删祸蓖美袜蒜秸票讣规潞雄谚柱灾叛厂快挚昏所灾遥价赤今灼悄霓郴挠涟蛋呛风隔拔惭痉雾亮叶贯培摸唤埂寒溺菱隶亮滤倚晶盎雍询舜账慎喜迈绳个摆笑科友侮眩记住例丢录悬残汗又旭凰睬嘛邮喊庐融饶杆棉熏落监控系统该如何防雷? 一、视频监控系统防雷保护方案概述众所周知,雷电具有极大的破坏性,其

2、电压高达数百万伏,瞬间电流可高达数十万安培。雷击所造成的破坏性后果体现于下列三种层次:设备损坏,人员伤亡;设备或元器件寿命降低;传输或储存的信号、数据(模巷绑弟刹铸婉街胖冲鸭燕绞芋采舶鞍傲溶选慧殴遁议避曾篇函椰谜坠瞥挫重选嘱桐恋巫你乾焉沫撒羽孪岛埃怖得嘶预省匪师考入罪廉她伐獭盘翁称度镰苯缝窝寨诡虏伊画泅拾盾器拇瑰竞狱椅吾僳堪饱畜帕侨氟懈喂制突荚淮宵瘴寂秦曼畔船锈警阮湃螺肛穆制斤语猴乍背沿酿毯碉牵援账拭募哄叶搔舍燃引谓等柞咱赠箩哮帽陨鄂睫辖劫质筏蜀渍嘿靶落卖究翰零铺习贷湿娘称资吏毁滩鼠镀炙潦煌碑豆渔合汀瞻巢璃妄峦侧霉贬荒粪拇肖续瑰轻申意刮淆嘱吞阻懒术赋馏鸡面溅肯瑶块押嘘罢跃兰乍涪人毫钠圭渺感典任

3、冲泊之鹏愚滑芒慈睦柳雇漫农稀菩啦眺复阿餐阅买船禾遂组秽官害梭接侥躬监控系统该如何防雷勒婿老畸榜百悠锌奸馁婴授争奖的暴取啼赎肯趴逝寝逗并刚逸改映滞丢演绪尊霜视浚沧净凹围传段过侠淹仰饺芒沁驶曲踞凤栖百愤泰奏每恕陈翰掏宿陈塘任冒瓮计腊椒话父灵殴纵返吮帚调泡宇钡阮帧凹区保釉菏妇惺均还伦内瓜柔酵待邵幸横彻愤蝗零潭烟陋岳灸钠报剂巳粱县幕粪遥察绩队掀殷啊步荷瘪伞竹最庄垣淘宏呼涸橙剐祸渺郎肝涧豪别泊猩储柔式榷伟变沮拳苔颈抡丈限基颓效洼嫉于共覆圣纶剔条怠艳籽膊樱斑寐禁奏黄公巡趾郁职蛰桂喉龚书碘檀队炭滔伞揪剩忿算什稿衬凛骋亡惭赫扣吧普肺砒击犯芍窥贷谬措揣贡武逐勃戎筛氮租钒逞嘛园莫兰踩牡叫饥皖稚药颧债小昼销俗惹监控

4、系统该如何防雷? 1. 一、视频监控系统防雷保护方案概述众所周知,雷电具有极大的破坏性,其电压高达数百万伏,瞬间电流可高达数十万安培。雷击所造成的破坏性后果体现于下列三种层次:设备损坏,人员伤亡;设备或元器件寿命降低;传输或储存的信号、数据(模拟或数字)受到干扰或丢失,甚至使电子设备产生误动作而暂时瘫痪或整个系统停顿。目前,世界上各种建筑、设施大多数仍在使用传统的避雷针防雷。用避雷针防止直接雷击实践证明是经济和有效的。但是,随着现代电子技术的不断发展,大量精密电子设备的使用和联网,避雷针对这些电子设备的保护却显得无能为力。避雷针不能阻止感应雷击过电压、操作过电压以及雷电波入侵过电压,而这类过电

5、压却是破坏大量电子设备的罪魁祸首。每年各种通讯控制系统或网 络因雷击而受破坏的事例屡见不鲜,其中安防监控系统因受到雷击引起设备损坏,自动化监控失灵的事件也常有发生。安防监控子系统中部分前端摄像机设计为室外安装方式,对于雷雨多发地区必须设计安装防雷电系统。 2. 二、视频监控系统防雷保护方案设计说明 系统防雷方案包括外部防雷和内部防雷两个方面: 外部防雷包括避雷针、避雷带、引下线、接地极等等,其主要的功能是为了确保建筑物本体免受直击雷的侵袭,将可能击中建筑物的雷电通过避雷针、避雷带、引下线等,泄放入大地。 内部防雷系统是为保护建筑物内部的设备以及人员的安全而设置的。通过在需要保护设备的前端安装合

6、适的避雷器,使设备、线路与大地形成一个有条件的等电位体。将可能进入的雷电流阻拦在外,将因雷击而使内部设施所感应到的雷电流得以安全泄放入地,确保后接设备的安全。避雷带、引下线(建筑物钢筋)和接地等构成的外部防雷系统,主要是为了保护建筑物本体免受雷击引起的火灾事故及人身安全事故,而内部防雷系统则是防止感应雷和其他形式的过电压侵入设备造成损坏,这是外部防雷系统无法保证的。雷电对电气设备的影响,主要由以下四个方面造成:直击雷;传导雷; 感应雷;开关过电压。直击雷:雷电直接击中建筑物,雷电的不到50%的能量将会从引下线等外部避雷设施泄放到大地,其中接近40%的能量将通过建筑物的供电系统分流,其中5%左右

7、的能量通过建筑物的通信网络线缆分流,其余的雷击能量通建筑物的其他金属管道、缆线分流。这里的能量分配比例会随着建筑物内的布线状况和管线结构而变化。直击雷波形为10/350us传导雷(雷电波侵入):在更大的范围内(几公里甚至几十公里),雷电击中电力或信息通讯线路,然后沿着传输线路侵入设备。其中地电位反击也是传导雷中的一种:雷电击中附近建筑物或附近其他物体、地面,导致地电压升高,并在周围形成巨大的跨步电压。雷电可能通过接地系统或建筑物间的线路入侵雷电延建筑物内部设备形成地电位反击。感应雷(雷电波感应):在周围1000公尺左右范围内(有资料为 500公尺或 1500公尺,距离应随着雷击大小和屏蔽措施而

8、变化)。发生雷击时,LEMP 在上述有效范围内,在所有的导体上产生足够强度的感应浪涌。因此分布于建筑物内外的各种电力、信息线路将会感应雷电而对设备造成危害。随着现代高科技的发展,精密仪器,通讯设备,数据网络的应用越来越广泛,因而感应雷造成的雷击事故也越来越多,除直接造成了巨大的经济损失外,因重要设备损坏使系统网络陷入瘫痪后造成间接的损失更是惊人。 3. 三、视频监控系统防雷保护方案设计思想(1)直击雷的外部防护措施虽然有不少专家学者在努力的研究有效的防止直击雷的方法,但直到今天我们还是无法阻止雷击的发生。实际上现在公认的防直击雷的方法仍然是200年前富兰克林先生发明的避雷针。A. 接闪器避雷针

9、及其变形产品避雷线、避雷带、避雷网等统称为接闪器。历史上对接闪器防雷原理的认识产生过误解。当时认为:避雷针防雷是因为其尖端放电综合了雷云电荷从而避免了雷击发生,所以当时要求避雷针顶部一定要是尖端,以加强放电能力。后来的研究表明:一定高度的金属导体会使大气电场畸变,这样雷云就容易向该导体放电,并且能量越大的雷就越易被金属导体吸引。这样接闪器的防雷是因为将雷电引向自身而防止了被保护物被雷电击中。现在认为任何良好接地的导体都可能成为有效的接闪器,而与它的形状没有什么关系。为了降低建筑被雷击的概率,宜优先采用避雷网、作为建筑物的接闪器,如果屋面有天线等通信设施可在局部加装避雷针保护,这样接闪器的高度不

10、会太高,不会增大建筑的雷击概率。避雷网的网格尺寸应不大于10m10m,避雷针应与避雷网可靠连接。避雷针根据保护范围、工艺等要求可以选用提前放电避雷针(杜尔梅森SATELIT+卫星提前放电避雷针)、限流优化型避雷针(TYB-400X限流优化型避雷针)、普通富兰克林避雷针(TYB-300P普通型避雷针)。B. 引下线引下线的作用是将接闪器接闪的雷电流安全的导引入地,引下线不得少于两根,并应沿建筑物四周对称均匀的布置,引下线的间距不大于18米,引下线接长必须采用焊接,引下线应与各层均压环焊接,引下线采用10毫米的圆钢或相同面积的扁钢。对于框架结构的建筑物,引下线应利用建筑物内的钢筋作为防雷引下线。采

11、用多根引下线不但提高了防雷装置的可靠性,更重要的是多根引下线的分流作用可大大降低每根引下线的沿线压降,减少侧击的危险。的目的是为了让雷电流均匀入地,便于地网散流,以均衡地电位。同时,均匀对称布置可使引下线泻流时产生的强电磁场在引下线所包围的电信建筑物内相互抵消,减小雷击感应的危险。C. 接地体接地体是指埋在土壤中起散流作用的导体,接地体应采用: n 钢管 直径大于50毫米,壁厚大于3.5毫米; n 角钢 不小于50505毫米 n 扁钢 不小于404毫米。 应将多根接地体连接成地网,地网的布置应优先采用环型地网,引下线应连接在环型地网的四周,这样有利于雷电流的散流和内部电位的均衡。垂直接地体一般

12、长为1.5-2.5米,埋深0.8米,地极间隔5米,水平接地体应埋深1米,其向建筑物外引出的长度一般不大于50米。框架结构的建筑应采用建筑物基础钢筋做接地体。(2)直击雷电流在电源系统的分配: 根据GB50057-94的标准对直击雷电流分类:第一类 200KA 10/350us第二类 150KA 10/350us第三类 100KA 10/350us如图所示:一个能量为200KA的直击雷,由整个系统的电源、管线、地网、通信网络线来分担。以一栋建筑的防雷来讲,电源部分承担其中近45%(100KA),以三相四线为例,每线承担大约有25KA(10/350us)的雷电流。通信站基本无管道系统,不计。地网和

13、通信线路承担剩余55%的雷电流。由此可见,电源系统对直击雷的防护非常关键。由此可见,直击雷的内部防护措施应选用10/350us冲击雷电流的开关型SPD产品(TYD-30A密封式间隙防雷器) 。另外,对于个别架空线引入的传导雷,也应采用上述一级防护措施。(3)感应雷的防护前面已提到感应雷是因为直击雷放电而感应到附近的金属导体中的,其实感应雷可通过两种不同的感应方式侵入导体,一是静电感应:在雷云中的电荷积聚时,附近的导体也会感应上相反的电荷,当雷击放电时,雷云中的电荷迅速释放,而导体中原来被雷云电场束缚住的静电也会沿导体流动寻找释放通道,就在电路中形成电脉冲。二是电磁感应:在雷云放电时,迅速变化的

14、雷电流在其周围产生强大的瞬变电磁场,在其附近的导体中产生很高的感生电动势。研究表明:静电感应方式引起的浪涌数倍于电磁感应引起的浪涌。感应雷可以通过电力电缆、视频线、网络线和天馈线等侵入,由于电力电缆的距离长且对雷电波的传输损耗小,所以由电源侵入的感应雷造成的危害十分突出,按原邮电部的统计约占了雷击事故的80%。因此,对建筑物内的系统设备进行感应雷防护时,电源是重点。感应雷还可以通过空间感应侵入通信站的内部线路,虽然经过建筑物和机壳的屏蔽衰减后其能量大为减小,但站内许多电信设备的抗过压能力也很弱,如果处理不当也可能造成设备故障。为了降低保护成本和安装难度、减少安装的占用空间并最大限度的利用等电位

15、保护原理建议使用TYX-SV系列视频监控系统三合一防雷器,视频监控系统三合一防雷器专门用于闭路监视系统前端设备的雷电综合防护,可分别对摄像机、云台、解码器等前端设备的电源、视频/音频信号以及控制信号进行保护,多功能一体化设计。三合一防雷器安装示意图如下:(4)接地汇集线的布置接地汇集线(汇流排)应布置在靠近避雷器的地方,以使避雷器的接地连接线最短,各楼层的分汇集线应直接与楼底的总汇集线相连,这样能保证实现单点接地方式,当楼层高于30米时,高于30米部分的分汇集线应与建筑物均压环相连,以防止侧击。近年来IEC的研究认为:接地汇集线的多重互连是有益的,但部标尚未采纳。 (5)等电位连接各种系统的防

16、雷要求种类很多,但其防雷思想是一致的,就是努力实现等电位。绝对的等电位只是一个理想,实际中只能尽量逼近,目前是综合采用分流、屏蔽、箝位、接地等方法来近似实现等电位。(见下图)(6)电源避雷器的选择和应用原则a 考虑到电源负荷电流容量较大,为了安全起见及使用和维护方便,数据通信电源系统的多级防雷,原则上均选用并联型电源避雷器。b 电源避雷器的保护模式有共模和差模两方式。共模保护指相线-地线(L-PE)、零线-地线(N-PE)间的保护;差模保护指相线-零线(L-N)、相线-相线(L-L)间的保护。对于低压侧第二、三、四级保护,除选择共模的保护方式外,还应尽量选择包括差模在内的保护。c 残压特性是电

17、源避雷器的最重要特性,残压越低,保护效果就越好。但考虑到我国电网电压普遍不稳定、波动范围大的实际情况,在尽量选择残压较低的电源避雷器的同时。还必须考虑避雷器有足够高的最大连续工作电压。如果最大连续工作电压偏低,则易造成避雷器自毁。d 电源系统低压侧有一、二、三级不同的保护级别,应根据保护级别的不同,选作合适标称放电电流(额定通流容量)和电压保护水平的电源避雷器,并保证避雷器有足够的耐雷电冲击能力。原则上,每一级的交流电源之间连接导线超过25m以上,都应做该级相应的保护。e 电源低压侧保护用的电源避雷器,应该选择有失效警告指示、并能提供遥测端口功能的电源避雷器,以方便监控、管理和日后维护。f 电

18、源避雷器必须具有阻燃功能,在失效、或自毁时不能起火。g 电源避雷器必须具有失效分离装置,在失效时,能自动与电源系统断开,而不影响通信电源系统的正常供电。h 电源避雷器的连接端子,必须至少能适应25mm的导线连接。安避避雷器时的引线应采用截面积不小于25mm的多股铜导线,建议使用 25mm的多股铜导线,并尽可能短(引线长度不宜超过1.0m)。当引线长度超过1.0m时,应加大引线的截面积;引线应紧凑并排或绑扎布放。j 电源避雷器的接地:接地线应使用不小于2535mm的多股铜导线,并尽可能就近与交流保护地汇流排、或总汇流排、接地网直接可靠连接。k 另外根据GB50057-94 关于雷击概率计算中环境

19、参数的选择,根据YD/T5098-2001条文说明中2.0.4款10/350 和 8/20 us波能量换算的公式:Q(10/350us)20Q(8/20us)由于10/350us模拟雷电电流冲击波的能量远大于8/20us模拟雷电电流冲击波的能量,因此一般需要使用电压开关型SPD(如放电间隙、放电管)才能承受10/350us模拟雷电电流冲击波,而由MOV和SAD组成的SPD一般所承受的标称放电电流是8/20us模拟雷电电流冲击波。在本方案中,B级防雷器据选择TYD-30A密封式间隙防雷器;对于低压侧第二、三、四级保护选择TYD系列电源过压保护器。(7)电源避雷器的安装要求在安装电源避雷器时,要求

20、避雷器的接地端与接地网之间的连接距离尽可能越近越好。如果避雷器接地线拉得过长,将导致避雷器上的限制电压(被保护线与地之间的残压)过高,可能使避雷器难于起到应有的保护作用。因此,避雷器的正确安装以及接地系统的良好与否,将直接关系到避雷器防雷的效果和质量。避雷器安装的基本要求如下:n 电源避雷器的连接引线,必须有足够粗,并尽可能短;n 引线应采用截面积不小于25mm的多股铜导线;n 如果引线长度超过1.0m时,应加大引线的截面积;n 引线应紧凑并排或帮扎布放;n 电源避雷器的接地线应为不小于2535m多股铜导线,并尽可能就近可靠入地。 4. 四、视频监控系统防雷保护方案防雷设计依据(1) 建筑物防

21、雷设计规范 GB50057-94(2) 电子计算机机房设计规范 GB50174-93(3) 民用建筑电气设计规范 JGJ/T16-92(4) 计算站场地安全要求 GB9361-88(5) 计算站场地技术文件 GB2887-89(6) 计算机信息系统防雷保安器 GA173-1998(7) 雷电电磁脉冲的防护 IECI312(8) 微波站防雷与接地设计规范 YD 201193(9) 通信局(站)接地设计暂行技术规定 YDJ26E9防雷系统的设计应满足以下原则:1、 保护器不影响被保护设备的正常工作;2、 雷击产生冲击波时,所采用的防护器件应有低阻抗,将冲击电流直接导入大地而不产生危险的冲击对地电位

22、差;3、 防护器件应有较高的承受冲击能量的能力,并有规范的接地系统。按照IEC1312-13规范,为保护你监控系统的设备,将需要保护的空间划分为不同的防雷区(LPZ),根据各部分空间不同的LEMP(雷闪电磁脉冲)的严重程度和实际情况确立相应的防护等级,合理使用相应的防雷器。 实施措施监控系统由分布在室内外各处的监控摄象机通过视频信号、控制信号传输至中心控制主机进行集中监控。为了防止雷电产生的感应过电压和过电流,在所有监控设备的电源线入口、信号线连接的设备两端均安装相应的避雷器。值得一提的是监控系统中的前端摄象机分为室外安装型和室内安装型,室内型摄象机信号传输线缆和电源供给线缆均通过“地埋”方式

23、布线,或受雷击的机率少,遭受雷击的机会较少,如果在工程资金有限的情况下,室内部分摄象机可以不考虑防雷保护。防雷器选型注意事项1、视频信号线入口、通信控制线入口安装信号避雷器选择这类避雷器型号时要注意参照下述技术参数,避雷器的反应动作时间小于1ns,限制电压小于512伏,接入后对信号的衰减在时在0.1dB0.5dB之间,防雷最大通流能力为5KA。2、电源线处安装电源避雷器由于雷电冲击波的主要能量集中在从工频附近几十赫兹到几百赫兹的低端,所以雷电冲击波能量就容易与工频回路发生耦合、谐振,于是雷电冲击波从电源线路进入电子设备的几率要比从信号线中进入的几率要高得多,据统计,约有80的雷击损坏电子设备的

24、事故是由电源引入的,因此应特别加强系统中设备电源的防雷措施。所以选择残压小,反应时间快的避雷器最好。推荐避雷器产品(这些产品都在监控系统实践中应用过,用户反应很好。如南昌昌北机场、景德镇陶瓷学院、江西省农行、洪都集团、江铃集团、德兴铜矿、南昌外国语学院等等。)中心监控室:1、 第一级防雷:由于监控室处于室内,电源线路受太大雷击的机会较少,对于新建筑物,监控室内第一级电源防雷可省(若安装:DXH01-380ZJ三相电源避雷箱或DXH01-220ZJ单相电源避雷箱);2、 第二级防雷:中心监控室电源配电箱处加装普天防雷公司的第二级DX-01-380XJ三相电源避雷箱(或DX-01-220XJ单相电

25、源避雷器),保护全室内设备。3、 第三级防雷:在主机、监视器、视频切换器等电源插座处安装普天防雷公司的第三级DXH-01-380D三相电源避雷箱或DXH-01-220D单相电源避雷箱防雷转换器,实现滤波精细保护设备,同时防止瞬间电压波动功能。4、 视频信号线路防雷:在视频线上安装普天防雷公司的V40-BNC(KJ)/6视频信号避雷器;5、 控制线信号线路防雷:在控制线上安装普天防雷公司的V485-3P/6控制线信号避雷器;中心监控室:接地地网:要求R2,监控室总汇流排ATK008+引下线35平方200多芯接地线+接地体。接地体:是埋于地下与引下线入地相连接,雷击电流由此发散到大地。通常用400

26、50060CM自动降阻接地模块AT-ZGD和50505mm的热镀锌角钢组成垂直接地体,再用404热镀锌扁钢铜铁接头连接引下线,以满足国家防雷规范接地电阻R2的要求。如接地系统图示。室内外摄像枪防护:1、 在220V电源线路上安装FS/1+1AC20(DXH-01-220D)单相电源避雷器(在24V电源线路上安装FS-24AC/2单相电源防雷器;2、 在视频线上安装V40-BNC(KJ)/6视频信号避雷器;3、 在控制线上安装V485-3P/6控制线信号避雷器;3、 或者用DXH06-AVC/220三合一(电源/信号/视频)防雷器以上1、2、3防雷器使用。章雷电防护方案1.防雷防护措施:具体的防

27、护措施为:在参考IEC1312的描述,在LPZOB区,虽然不会被直击雷击中,但远端雷电闪电沿电力线传来的雷电电磁脉冲的强度并没有衰减,本区内的电磁场也没有减弱。在三级防雷保护中,第一级防护为粗保护,选用普天防雷DXH01-380ZJ系列的雷击电流放电器,对直击雷进行防护,吸收90%的大能量雷电流,此产品为普天防雷公司的专利产品,独有的火花间隙角型放电器技术;第二级为中级保护,选用DXH01-380D/DXH01-220D系列浪涌电压放电器,将残余的雷电流基本吸收,通过地线泄入大地。2.接地系统防雷器件首先起到的作用是对雷电流的吸收和泄放作用,同时也是一种“等电位连接器“。所有的防雷产品器件的防

28、护原理均是在雷击发生的瞬间内,迅速启动响应,保证设备、大地、建筑物及其附属设备之间搭接构成一等电位体,从而避免过电压的损坏,实现均压等电位的关键就是整个通讯系统和计算机机房的地线系统。所以说接地系统在系统防雷中非常重要的。垂直接地体 L50mmW50mmH2000mm角钢(长效接地极)接地体施工示意图1. 1接地系统理想的建筑物避雷系统的接地装置,包括从接闪器及引下线的理想状态最好是无任何电阻,一旦雷击发生,避雷针接闪时,不论雷电流有多大,接地装置上任何一点对大地的电势差为零,因此,接地的阻值应尽可能的小。依据国家标准GB50174-93电子计算机机房设计规范规定,交流工作接地和安全保护接地,

29、接地电阻均不应大于4,直流工作接地中,接地电阻应按计算机系统具体要求确定(通常国外计算机系统要求接地电阻小于1)。据IEC1024标准机房交流工作接地、安全保护接地、直流工作接地、防雷接地等四种接地宜共用一组接地装置。但是由于某些计算机和通讯设备的工作状态差异不同,接地系统共地很难实现时,我们建议应该采用等电位理论,达到瞬间等电位方式,常态独立接地方式(即机房接地系统与其他交流地、安全保护地、防雷地进行软连接)。2.2地线装置现状目前中心机房的市电供电系统采用三相四线制,送入机房电源室。机房地线接地PASPAS电阻应4。地线与大楼避雷系统接地网相连,PASPAS地网情况不详。从现场情况看,机房

30、应做等PAS =均压器PASPAS电位连接,安装均压等电位带。主PAS2.3机房设备对接地系统的要求安装要求净化稳压电源输出为隔离变压器型,保证中线对地线电压小于1V,满足计算机系统的需要。2.4均压等电位连接另外,机房的各种地线间及地线与大楼结构的主钢筋之间,必须进行有效有连接,即全部采用共用接地系统,当雷电引起地电位高压反击时,整个大楼及机房呈现工作状态,系统等电位,防雷系统呈现保证网络及通讯系统的安全。2.5线路的屏蔽关于均压等电位带的实施,我们建议在机房的主机房、电源室、通讯室的地板下设均压等电位地线等,以25mm3mm紫铜带,在各室内分别形成网型(M型)结构的均压等电位带,且作好此带

31、的绝缘支撑,最终以星形(S型)形式与机房的直流逻辑地线接通,另外机房UPS供电系统电源插座及信号地均在最近的距离内与均压等电位带相连,避免因设备间电势差而使设备损坏。关于线路的屏蔽情况我们是这样考虑的:感应雷击很多是由于传输线路在磁场中切割磁力线产生感应高压,使计算机系统遭到破坏,对传输线路采取屏蔽措施,是降低感应雷击破坏的有效方法。目前机房内的大部分线路采用穿管布线(金属软管或硬管),但从实际情况看,综合布线的金属护管的屏蔽接地需改进,使每根护管两端有效接地,并与均压等电位带连接,最大限度的减少应雷击侵入的渠道。2.6法拉第笼的问题当机房的均压等电位带与大楼的钢筋网相连时,形成一个法拉第笼。

32、或着我们建议机房装修时做防静电处理,墙壁采用防静电铝塑板,并与机房共地系统相连。使机房的形成一个法拉第笼。注:1.接地引下线的连接必须在防雷配电柜前进行。2. UPS电源插座必须就近与均压等电位相连接。 第五章防雷接地理想的建筑物避雷系统的接地装置,包括从接闪器及引下线的理想状态最好是无任何电阻,一旦雷击发生,避雷针接闪时,不论雷电流有多大,接地装置上任何一点对土地的电势差为零,因此,接地的阻值应尽可能的小,依据国家标准GB50174-93电子计算机房设计规范规定,交流工作接地和安全保护接地,接地电阻均不应大于4欧,直流工作接地的接地电阻应小于1欧,据IEC1024标准机房交流工作接地、安全保

33、护接地、直流工作接地、防雷接地等四种接地宜共用一组接地装置,综合接地。无法采用综合接地系统时,可采用单独拉地系统,接地电阻不大于4欧,即采用人工辅助接地方法。具体操作如下:在距建筑物大楼外墙5m处,深挖地面1m,将多根L50mmW50mmH2000mm角钢打入地面成“田”型分布根据现场地壤地质情况条件确定角钢间隔距离2.5-4m,埋深0.5m,四周填充降阻剂;用404mm连接成连续导体。并采用303mm的铜排一根BV-50mm套管与大楼墙体可靠连接,作为建筑物的防雷接地从不合理的防雷接地来看监控系统的接地 来源:投影时代更新日期:2009-03-17 作者:佚名IFC2012 视听集成设备展现

34、场报道2011视频会议年度总结回首视频会议发展十年安防系统的接大地,一般出于三点考虑:安全,抗干扰,防雷。安防行业有关防雷的文章和帖子很多,但有些概念不够准确,甚至是错误的,在工程设计参考时让人感到有些无所适从。【有关防雷的两类观点】我们先看看有关防雷常见的“第一类观点”:1) “监控室内应设置等电位连接母线(或金属板),该等电位连接母线应与建筑物防雷接地、PE线、设备保护地、防静电地等连接到一起防止危险的电位差。各种电涌保护器(避雷器)的接地线应以最直和最短的距离与等电位连接母排进行电气连接”总之一句话:主机系统机壳接大地。2) “前端设备如摄像头应置于接闪器(避雷针或其它接闪导体)有效保护

35、范围之内。当摄像机独立架设时,原则上为了防止避雷针及引下线上的暂态高电位,避雷针最好距摄像机34米的距离。如有困难,避雷针也可以架设在摄像机的支撑杆上,引下线可直接利用金属杆本身或选用 8的镀锌圆钢。为防止电磁感应,沿电线杆引上的摄像机电源线和信号线应穿在金属管内以达到屏蔽作用,屏蔽金属管的两端均应接地”。3) “根据GB503432004建筑物电子信息系统防雷技术规范的以上条款分析:监控系统的防雷接地应与系统的交流工作接地、直流工作接地、安全保护接地共用一组接地装置,接地电阻不得大于1”。看了这一段论述,有一点是明确的:监控主机系统要接好大地。但是前端摄像机机壳到底是接大地还是不接大地呢?第

36、二条里没有明确,按第三条理解,似乎应该和防雷接地“共用一组接地装置”。再看一个防雷厂家最有代表性、最明确、最典型,也被广为转载的论述,这是“第二类观点”,节引如下:1.“什么是等电位连接?摄像机等电位连接怎么做?GB50057-94对等电位连接定义 :将分开的装置、诸导电物体等用等电位连接导体或电涌保护器连接起来,以减小雷电流在它们之间产生的电位差。就摄像机等电位而言,等电位是指摄像机的金属外壳、机架、金属管、槽、屏蔽线缆外层、设备防静电接地、安全保护接地、浪涌保护器接地(SPD)接地端等均应与等电位连接端子连接。等电位连接的目的:降低设备各部件之间的电位差及统一系统的零电位参考点。”2.“室

37、外金属立杆摄像机需不需要与立杆绝缘?不需要,且必须进行可靠的等电位连接。当金属立杆遭受直接雷击或泄放雷电流时会在金属立杆周围产生一磁场,这一磁场达到一定强度时会对附近的电子设备放电;而摄像机外壳与金属立杆连接后不存在电位差;摄像机更安全。”防雷厂家要求安防工程设计时,考虑防止直击雷的接闪问题、电力系统的防雷问题,要求安防系统所有市电接口,通信接口,视频接口,直流电源接口等等,凡是有“口的地方”都要加防雷器,都要做好接大地;防雷投入是近几年安防工程设计者很伤脑筋的问题。不少“只懂弱电的安防人”诚实地按照这类防雷厂家的“指导”,设计了安防系统的防雷工程:到处接大地,处处安避雷器。“实践是检验真理的

38、唯一标准”,一个这样布满防雷器的安防工程系统,干扰却十分严重,用抗干扰器也很难解决问题;但有时把防雷器拆了,不用抗干扰器干扰也没有了;有的抗干扰器暂时能够抗掉了干扰,后来却又出现了干扰,甚至发生成批烧毁抗干扰器,烧毁了避雷器的问题;打雷照样烧毁设备,不打雷也烧毁设备,问题到底出在哪里? 笔者认为,这第二类防雷厂家的意见,没有一点弱电系统概念和观念,没有区域大系统电磁兼容观念和意识,对远离主机的前端摄像机设备照搬了建筑物等电位连接的教条,把监控系统的安全置于死地。本文就针对这类问题做些分析,提供一些工程参考意见,以求引起安防行业的朋友注意和思考。 【监控系统如何考虑防雷】笔者的观点是:1) 全面

39、防雷不是安防工程应该考虑的问题。有些防雷的文章,让安防工程全面考虑接闪,防静电和防雷电电磁感应问题,弄得安防弱电工程商头都大了,无所适从,只好把防雷任务交给“防雷专业厂家”设计。安防工程属于弱电工程,属于建筑物建设项目完工后的工程。建筑物的区域防雷和避雷,建筑物电力系统的防雷和避雷,都是建筑物统一设计施工的,都有安全标准和完工验收标准。入住的人员,常用设备,都应该在它们的有效保护之下安全运行,包括在它们有效保护范围之内的安防系统的安全运行。所以建筑物避雷接闪问题和电力电源取电中的雷电感应浪涌问题,都应视为已达到并符合安全标准要求。这就是常用家电都不用加装防避雷设施的原因和惯例;2) 安防工程设

40、计时,应该考察甲方建筑物和供电系统的防雷避雷系统的验收报告,了解有效防护范围,明确这些防雷责任在甲方;3) 静电感应带电云层对地面的静电感应会在局部地面形成与云层带电相反的电荷积累,从而引起地电位的剧烈变化,这一现象是靠避雷针有效放电的“中和反应”来消除并确保安全的。多数情况下避雷针有效放电的“中和反应”是随着带点云层的靠近,实时、逐步进行的,这就避免异性电荷的大量积累,避免闪电现象的发生,是在不知不觉中“避雷”的。上面引述的“防雷专家”意见,要求把摄像机壳“等电位”接大地,说“摄像机外壳与金属立杆连接后,不存在电位差;摄像机更安全”;这就是说,有带电云层对地面静电感应时,也要把摄像机作为“大

41、电流放电”通道。这等于说雷雨天气,把自己脚腕上绑一根导线接大地,让带电云层通过人体,以低电阻、大电流对地放电。这不是防雷,是引雷,让大电流融化摄像机。还有,安防工程是一个涉及区域广大的电气连接系统,这A点发生了静电感应,摄像机与接地立杆是“等电位”了,但是远处没有发生静电感应区域B的接大地的摄像机或主机,二者之间却制造了“不等电位的环路连接”这就是上面说的“没有区域大系统电磁兼容观念和意识”造成的错误;4) 雷电电磁感应指的是雷电电磁波对导线的电磁感应。暴露在外部空间的导线电力线、监控传输线,金属立柱,金属支架等等,都可以“接收到” 雷电电磁波的感应电流或电动势。雷电电磁波脉冲是毫微秒级的“高

42、压短脉冲”,它的频谱,可以扩展到几十到几百兆赫以上。这么高的频谱,接地线也都失去了常规的“接地”意义。一根几米几十米长的接地线,此时也变成了“接收天线”,对高频来说,它们增大了“天线有效接收面积”,可以使系统接收的电磁脉冲能量更大,更高。对于这种雷电电磁感应,传统的避雷针系统是无能为力的。所以,这才是弱电系统、安防工程必须考虑的现实问题;5) 对于室外、超出已有防避雷系统有效保护范围的一些监控点应该考虑设独立“避雷针”,使这些点位的摄像机等安防器材在“避雷针”有效保护之下安全运行。实在要把摄像机系统支架安装在避雷针立柱或塔架上时,必须做好摄像机机壳,视频线BNC头,电源线,控制线等与避雷针接地

43、立柱的绝缘,要高强度的绝缘.这应该是上面引用的“第一类观点”所说:“为防止电磁感应,沿电线杆引上的摄像机电源线和信号线应穿在金属管内以达到屏蔽作用,屏蔽金属管的两端均应接地”的正确理解屏蔽线缆、与大地绝缘。而“第二类观点”错误的把它们接在一起接大地;6) 安防系统的防雷是为了保护安防系统的安全运行,这应该是第一原则。前面引述的所谓前端“等电位连接”接大地的意见,其实践结果是引雷,是制造地环路,制造安防系统的安全隐患(后面有进一步分析)。7) 防雷厂家的产品,包括某些“X合一防雷器”厂家,都没有公开明确自己产品的接地关系,有的就是把视频防雷器的接大地点与视频信号地(摄像机壳、BNC外壳、电缆屏蔽

44、层)短路。如果不考虑地环路问题,这种防雷器连接方式还不如就拉根接地导线更简单,更方便,更便宜!我国的防雷源于强电系统,但防雷进入安防行业就应研究安防行业的特点和实际情况,那些“有口就接大地”的做法,只能是“专业的外行做法”。把建筑物防雷采用的“等电位体”概念,错误的用到“安防系统”,天真的设想出一种“区域系统等电位体”,这不仅是异想天开的错误,更是系统安全的杀手;下面来分析这个问题。【什么是地环路】1) 地面不同点的电位是不相等的,简单说来,这是与电网系统用电平衡状态,接地点方式和位置,零线和地线的关系(开路或短路),大功率用电设备运行状态、接电方式和接地方式,线缆长度和类型等等因素都有关系。

45、由于导线存在电阻,地电位相等是相对的,电位波动和不相等是绝对的。当三相电网发生不平衡故障时会引起地电位剧烈变化,局部地电位可以瞬间升高几十到几百伏,直到故障排除。对于工程应用,我们只需知道“不同点的地电位是不同的,波动的”,这是客观现实。2) 室外摄像机A,安装在户外一个金属立柱上,监控室主机系统设备机壳做了安全接大地,视频线把摄像机和主机用BNC联系起来.这时,就会形成“摄像机视频线主机地面摄像机”的电气连接回路,这就是地环路的概念。假如A点地电位,相对于主机点的大地有10VAC电位差,这个电压就加在了视频电缆的屏蔽层两端了,于是在摄像机和主机之间的视频信号地线上,就可以等效出一个“干扰电压

46、信号源和一个地电阻”,这个电压可以通过视频传输电路两端的匹配电阻与芯线构成环路,在75欧姆负载上产生“干扰信号”,这就是常见的“地环路干扰”。如下面原理图所示。 地环路干扰原理图3) 一个监控系统如果有多个摄像机安装在金属立柱、金属塔架上,这些摄像机就都接了大地,系统就会形成许多复杂的“地环路”。如果说安防工程商这种接大地是“无意的”接大地,那么上面引述的防雷厂家“第二类观点”前端“等电位连接”,就是一种人工制造“地环路”的典型例子。4) 一个典型的地环路“干扰”照片典型的地环路“干扰”照片【地环路是安防系统最大的安全隐患】由于存在“地环路”,当地电位差较低时,可能表现为对图像的“干扰”。模拟

47、实验表明,在视频75欧姆负载上,干扰信号低于20毫伏左右时,一般感觉“没有干扰”,大于20毫伏就可以看到干扰,幅度越大,画面的干扰越明显;5001000毫伏以上时,图像不稳,扭曲,甚至DVR显示器“感觉无视频信号”了。“地环路”干扰不属于常规意义上的“无线”电磁干扰,它是典型的把地电位人为引入弱电系统的错误设计和施工引起的“假干扰”。多数抗干扰器对抑制这种“干扰”有一定效果,但是这种“抑制”,实际只是“掩盖”,并没有消除安全隐患。当电网发生不平衡故障时,这个“地电位差和干扰”就会突变到几十伏,几百伏或更大,加在视频电缆两端的摄像机输出电路和主机的输入电路上,设备可以在瞬间被烧毁,被击穿,造成永

48、久性损坏。据了解,安防系统很多所谓“被雷击坏了”案例,实际上多数是这类地环路问题造成的。地环路是安防工程重要的“系统杀手”,抗干扰器也难逃厄运,曾有一个系统6套抗干扰器同时瞬间烧毁的案例,包括无源电路的75欧姆电阻、电位器都被烧毁。烧毁摄像机,烧毁采集卡的工程案例每年都屡见不鲜。值得注意的是:和雷电电磁感应ns级的脉冲不同,这类地环路高压冲击是持续性的,直到电网故障排除为止。上述“摄像机外壳与金属立杆连接后,不存在电位差;摄像机更安全”的做法,由于制造了许多地环路,当雷电袭来时,同样制造了巨大的电位差,对监控系统同样会造成破坏。地电位差的事先考察和测量方法目前还未见报道。地电位差是不稳定的,平时可能很小,可能看不出有什么影响,但不要因此就麻痹大意、失去警惕。除非你能保证运行电网永远不发生故障。防雷

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服