资源描述
高中必修一一些重点
函数值域求法十一种 2
复合函数 9
一、复合函数的概念 9
二、求复合函数的定义域: 9
复合函数单调性相关定理 10
函数奇偶性的判定方法 10
指数函数: 12
幂函数的图像与性质 15
函数值域求法十一种
1. 直接观察法
对于一些比较简单的函数,其值域可通过观察得到。
例1. 求函数的值域。
解:∵
∴
显然函数的值域是:
例2. 求函数的值域。
解:∵
故函数的值域是:
2. 配方法
配方法是求二次函数值域最基本的方法之一。
例3. 求函数的值域。
解:将函数配方得:
∵
由二次函数的性质可知:当x=1时,,当时,
故函数的值域是:[4,8]
3. 判别式法
例4. 求函数的值域。
解:原函数化为关于x的一元二次方程
(1)当时,
解得:
(2)当y=1时,,而
故函数的值域为
例5. 求函数的值域。
解:两边平方整理得:(1)
∵
∴
解得:
但此时的函数的定义域由,得
由,仅保证关于x的方程:在实数集R有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由 求出的范围可能比y的实际范围大,故不能确定此函数的值域为。
可以采取如下方法进一步确定原函数的值域。
∵
代入方程(1)
解得:
即当时,
原函数的值域为:
注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。
4. 反函数法
直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。
例6. 求函数值域。
解:由原函数式可得:
则其反函数为:,其定义域为:
故所求函数的值域为:
5. 函数有界性法
直接求函数的值域困难时,可以利用已学过函数的有界性,反客为主来确定函数的值域。
例7. 求函数的值域。
解:由原函数式可得:
∵
∴
解得:
故所求函数的值域为
例8. 求函数的值域。
解:由原函数式可得:,可化为:
即
∵
∴
即
解得:
故函数的值域为
6. 函数单调性法
例9. 求函数的值域。
解:令
则在[2,10]上都是增函数
所以在[2,10]上是增函数
当x=2时,
当x=10时,
故所求函数的值域为:
例10. 求函数的值域。
解:原函数可化为:
令,显然在上为无上界的增函数
所以,在上也为无上界的增函数
所以当x=1时,有最小值,原函数有最大值
显然,故原函数的值域为
7. 换元法
通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型,换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作用。
例11. 求函数的值域。
解:令,
则
∵
又,由二次函数的性质可知
当时,
当时,
故函数的值域为
例12. 求函数的值域。
解:因
即
故可令
∴
∵
故所求函数的值域为
例13. 求函数的值域。
解:原函数可变形为:
可令,则有
当时,
当时,
而此时有意义。
故所求函数的值域为
例14. 求函数,的值域。
解:
令,则
由
且
可得:
∴当时,,当时,
故所求函数的值域为。
例15. 求函数的值域。
解:由,可得
故可令
∵
当时,
当时,
故所求函数的值域为:
8. 数形结合法
其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目。
例16. 求函数的值域。
解:原函数可化简得:
上式可以看成数轴上点P(x)到定点A(2),间的距离之和。
由上图可知,当点P在线段AB上时,
当点P在线段AB的延长线或反向延长线上时,
故所求函数的值域为:
例17. 求函数的值域。
解:原函数可变形为:
上式可看成x轴上的点到两定点的距离之和,
由图可知当点P为线段与x轴的交点时,,
故所求函数的值域为
例18. 求函数的值域。
解:将函数变形为:
上式可看成定点A(3,2)到点P(x,0)的距离与定点到点的距离之差。
即:
由图可知:(1)当点P在x轴上且不是直线AB与x轴的交点时,如点,则构成,根据三角形两边之差小于第三边,有
即:
(2)当点P恰好为直线AB与x轴的交点时,有
综上所述,可知函数的值域为:
注:由例17,18可知,求两距离之和时,要将函数式变形,使A、B两点在x轴的两侧,而求两距离之差时,则要使A,B两点在x轴的同侧。
如:例17的A,B两点坐标分别为:(3,2),,在x轴的同侧;例18的A,B两点坐标分别为(3,2),,在x轴的同侧。
9. 不等式法
利用基本不等式,求函数的最值,其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时需要用到拆项、添项和两边平方等技巧。
例19. 求函数的值域。
解:原函数变形为:
当且仅当
即当时,等号成立
故原函数的值域为:
例20. 求函数的值域。
解:
当且仅当,即当时,等号成立。
由可得:
故原函数的值域为:
10. 一一映射法
原理:因为在定义域上x与y是一一对应的。故两个变量中,若知道一个变量范围,就可以求另一个变量范围。
例21. 求函数的值域。
解:∵定义域为
由得
故或
解得
故函数的值域为
11. 多种方法综合运用
例22. 求函数的值域。
解:令,则
(1)当时,,当且仅当t=1,即时取等号,所以
(2)当t=0时,y=0。
综上所述,函数的值域为:
注:先换元,后用不等式法
例23. 求函数的值域。
解:
令,则
∴当时,
当时,
此时都存在,故函数的值域为
注:此题先用换元法,后用配方法,然后再运用的有界性。
总之,在具体求某个函数的值域时,首先要仔细、认真观察其题型特征,然后再选择恰当的方法,一般优先考虑直接法,函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法。
复合函数
一、复合函数的概念
如果y是u的函数,而u是x的函数,即y = f ( u ), u = g ( x ) ,那么y关于x的函数y = f [g ( x ) ]叫做函数f 与 g 的复合函数,u 叫做中间变量。
注意:复合函数并不是一类新的函数,它只是反映某些函数在结构方面的某种特点,因此,根据复合函数结构,将它折成几个简单的函数时,应从外到里一层一层地拆,注意不要漏层。
另外,在研究有关复合函数的问题时,要注意复合函数的存在条件,即当且仅当g ( x )的值域与f ( u )的定义域的交集非空时,它们的复合函数才有意义,否则这样的复合函数不存在。
例:f ( x + 1 ) = (x + 1) 可以拆成y = f ( u ) = u2 , u = g ( x ) , g ( x ) = x + 1 ,即可以看成f ( u ) = u2 与g ( x ) = x + 1 两个函数复合而成。
二、求复合函数的定义域:
(1)若f(x)的定义域为a ≤ x ≤ b,则f [ g ( x ) ] 中的a ≤ g ( x ) ≤ b ,从中解得x的范围,即为f [g ( x )]的定义域。
例1、y = f ( x ) 的定义域为[ 0 , 1 ],求f ( 2x + 1 )的定义域。
答案: [-1/2 ,0 ]
例2、已知f ( x )的定义域为(0,1),求f ( x 2)的定义域。
答案: [-1 ,1]
(2)若f [ g ( x ) ]的定义域为(m , n)则由m < x < n 确定出g ( x )的范围即为f ( x )的定义域。
例3、已知函数f ( 2x + 1 )的定义域为(0,1),求f ( x ) 的定义域。
答案: [ 1 ,3]
(3)由f [ g ( x ) ] 的定义域,求得f ( x )的定义域后,再求f [ h ( x ) ]的定义域。
例4、已知f ( x + 1 )的定义域为[-2 ,3],求f ( 2x 2 – 2 ) 的定义域。
答案:[-√3/2 ,-√3]∪[√3/2 ,√3]
三、求复合函数的解析式。
1、待定系数法:在已知函数解析式的构造时,可用待定系数法。
例1 设是一次函数,且,求
解:设 ,则
2、 配凑法:已知复合函数的表达式,求的解析式,的表达式容易配成的运算形式时,常用配凑法。但要注意所求函数的定义域不是原复合函数的定义域,而是的值域。
例2 已知 ,求 的解析式
解:,
3、换元法:已知复合函数的表达式时,还可以用换元法求的解析式。与配凑法一样,要注意所换元的定义域的变化。
例3 已知,求
解:令,则,
复合函数单调性相关定理
1、引理1 已知函数y=f[g(x)].若u=g(x)在区间(a,b)上是增函数,其值域为(c,d),又函数y=f(u)在区间(c,d)上是增函数,那么,原复合函数y=f[g(x)]在区间(a,b)上是增函数
证 明 在区间(a,b)内任取两个数x1,x2,使a<x1<x2<b.
因为u=g(x)在区间(a,b)上是增函数,所以g(x1)<g(x2),记u1=g(x1),u2=g(x2)即u1<u2,且u1,u2∈(c,d).
因为函数y=f(u)在区间(c,d)上是增函数,所以f(u1)<f(u2),即f[g(x1)]<f[f(x2)],
故函数y=f[g(x)]在区间(a,b)上是增函数.
2、引理2 已知函数y=f[g(x)].若u=g(x)在区间(a,b)上是减函数,其值域为(c,d),又函数y=f(u)在区间(c,d)上是减函数,那么,复合函数y=f[g(x)]在区间(a,b)上是增函数.
证明 在区间(a,b)内任取两个数x1,x2,使a<x1<x2<b.
因为函数u=g(x)在区间(a,b)上是减函数,所以g(x1)>g(x2),记u1=g(x1),u2=g(x2)即u1>u2,且u1,u2∈(c,d).因为函数y=f(u)在区间(c,d)上是减函数,所以f(u1)<f(u2),即f[g(x1)]<f[f(x2)],故函数y=f[g(x)]在区间(a,b)上是增函数.
3、总结 同增异减
函数奇偶性的判定方法
1.定义域判定法
例1 判定的奇偶性.(非奇非偶)
2.定义判定法f(x)与f(-x)关系
例2 判断的奇偶性.(偶)
3.等价形式判定法
例3 判定的奇偶性.(奇)
评注:常用等价变形形式有:若或,则为奇函数;若或,则为偶函数(其中).
4.性质判定法
例4 若,是奇函数,是偶函数,试判定的奇偶性.
评注:在两个函数(常函数除外)的公共定义域关于原点对称的前提下:①两个偶函数的和、差、积都是偶函数;②两个奇函数的和、差是奇函数,积是偶函数;③一个奇函数与一个偶函数的积是奇函数.
5、练习
(1).(★★★★)函数f(x)在R上为增函数,则y=f(|x+1|)的一个单调递减区间是_ (-∞,-1
(2)(★★★★★)若函数f(x)=ax3+bx2+cx+d满足f(0)=f(x1)=f(x2)=0 (0<x1<x2),且在[x2,+∞上单调递增,则b的取值范围是__(-∞,0)_______.
(1)令t=|x+1|,则t在(-∞,-1上递减,又y=f(x)在R上单调递增,∴y=f(|x+1|)在(-∞,-1上递减.
(2)∵f(0)=f(x1)=f(x2)=0,∴f(0)=d=0.f(x)=ax(x-x1)(x-x2)=ax3-a(x1+x2)x2+ax1x2x,
∴b=-a(x1+x2),又f(x)在[x2,+∞单调递增,故a>0.又知0<x1<x,得x1+x2>0,
∴b=-a(x1+x2)<0.
2.奇偶性
记F(x)=f[g(x)]——复合函数,则F(-x)=f[g(-x)],
如果g(x)是奇函数,即g(-x)=-g(x) ==> F(-x)=f[-g(x)],
则当f(x)是奇函数时,F(-x)=-f[g(x)]=-F(x),F(x)是奇函数;
当f(x)是偶函数时,F(-x)=f[g(x)]=F(x),F(x)是偶函数。
如果g(x)是偶函数,即g(-x)=g(x) ==> F(-x)=f[g(x)]=F(x),F(x)是偶函数。
所以由两个函数复合而成的复合函数,当里层的函数是偶函数时,复合函数是偶函数,不论外层是怎样的函数;当里层的函数是奇函数、外层的函数也是奇函数时,复合函数是奇函数,当里层的函数是奇函数、外层的函数是偶函数时,复合函数是偶函数。
在其它的场合,就不能如此单纯地判断复合函数的奇偶性了。
二 加减函数
1.增减性 对于F(x)=g(x)+f(x) ,增+增=增 ,减+减=减, 减+增则无定则
2.奇偶性 对于F(x)=g(x)+f(x) , 奇+奇=奇, 奇-奇=奇, 偶+偶=偶 ,偶-偶=偶.奇+偶无定则
三 相乘函数
1.增减性
对于F(x)=g(x)*f(x) ,一切皆无定则.知道你会不信 ,很好 ,我来举个例子:f(x)=g(x)=-x ,都是减函数,而F(x)=x^2,有增有减.
2.奇偶性
对于F(x)=g(x)*f(x), 同样满足乘法定则(其实这名字是我取的,不要说出去,不然没人听的懂). 即 奇*偶=奇 ,偶*偶=偶 ,奇*奇=偶 除法就不用说了,F(x)=g(x)/f(x) ,可以看成F(x)=g(x)[1/f(x)], 自己推.
指数函数:
定义:函数叫指数函数。 定义域为R,底数是常数,指数是自变量。
要求函数中的a必须。因为若时,,当时,函数值不存在。
,,当,函数值不存在。时,对一切x虽有意义,函数值恒为1,但
的反函数不存在, 因为要求函数中的。
1、对三个指数函数的图象的认识。
图象特征与函数性质:
图象特征
函数性质
(1)图象都位于x轴上方;
(1)x取任何实数值时,都有;
(2)图象都经过点(0,1);
(2)无论a取任何正数,时,;
(3)在第一象限内的纵坐标都大于1,在第二象限内的纵坐标都小于1,的图象正好相反;
(3)当时,
当时,
(4)的图象自左到右逐渐上升,的图象逐渐下降。
(4)当时,是增函数,
当时,是减函数。
对图象的进一步认识,(通过三个函数相互关系的比较):
①所有指数函数的图象交叉相交于点(0,1),如和相交于,当时,的图象在的图象的上方,当,刚好相反,故有及。
②与的图象关于y轴对称。
③通过,,三个函数图象,可以画出任意一个函数()的示意图,如的图象,一定位于和两个图象的中间,且过点,从而也由关于y轴的对称性,可得的示意图,即通过有限个函数的图象进一步认识无限个函数的图象。
2、对数:
定义:如果,那么数b就叫做以a为底的对数,记作(a是底数,N 是真数,是对数式。)
由于故中N必须大于0。
当N为零的负数时对数不存在。
(1)对数式与指数式的互化。
由于对数是新学的,常常把不熟悉的对数式转化为指数式解决问题,如:
求 解:设
评述:由对数式化为指数式可以解决问题,反之由指数式化为对数式也能解决问题,因此必须因题而异。如求中的,化为对数式即成。
(2)对数恒等式: 由
将(2)代入(1)得
运用对数恒等式时要注意此式的特点,不能乱用,特别是注意转化时必须幂的底数和对数的底数相同。
计算: 解:原式。
(3)对数的性质:
①负数和零没有对数; ②1的对数是零; ③底数的对数等于1。
(4)对数的运算法则:
①
②
③ ④
3、对数函数:
定义:指数函数的反函数叫做对数函数。
1、对三个对数函数
的图象的认识。
图象特征与函数性质:
图象特征
函数性质
(1)图象都位于 y轴右侧;
(1)定义域:R+,值或:R;
(2)图象都过点(1,0);
(2)时,。即;
(3),当时,图象在x轴上方,当时,图象在x轴下方,与上述情况刚好相反;
(3)当时,若,则,若,则;
当时,若,则,若时,则;
(4)从左向右图象是上升,而从左向右图象是下降。
(4)时,是增函数;
时,是减函数。
对图象的进一步的认识(通过三个函数图象的相互关系的比较):
(1)所有对数函数的图象都过点(1,0),但是与在点(1,0)曲线是交叉的,即当时,的图象在的图象上方;而时,的图象在的图象的下方,故有:;。
(2)的图象与的图象关于x 轴对称。
(3)通过,,三个函数图象,可以作出任意一个对数函数的示意图,如作的图象,它一定位于和两个图象的中间,且过点(1,0),时,在的上方,而位于的下方,时,刚好相反,则对称性,可知的示意图。
因而通过课本上的三个函数的图象进一步认识无限个函数的图象。
4、对数换底公式:
由换底公式可得:
由换底公式推出一些常用的结论:
(1) (2)
(3) (4)
5、指数方程与对数方程*
定义:在指数里含有未知数的方程称指数方程。
在对数符号后面含有未知数的方程称对数方程。
由于指数运算及对数运算不是一般的代数运算,故指数方程对数方程不是代数方程而属于超越方程。
指数方程的题型与解法:
名称
题型
解法
基本型
同底数型
不同底数型
需代换型
取以a为底的对数
取以a为底的对数
取同底的对数化为
换元令转化为的代数方程
对数方程的题型与解法:
名称
题型
解法
基本题
对数式转化为指数式
同底数型
转化为(必须验根)
需代换型
换元令转化为代数方程
幂函数的图像与性质
一、幂函数的定义
一般地,形如(R)的函数称为幂孙函数,其中是自变量,是常数.如等都是幂函数,幂函数与指数函数,对数函数一样,都是基本初等函数.
分数指数幂
正分数指数幂的意义是:(,、,且)
负分数指数幂的意义是:(,、,且)
1、 幂函数的图像与性质
幂函数随着的不同,定义域、值域都会发生变化,可以采取按性质和图像分类记忆的方法.熟练掌握,当的图像和性质,列表如下.
从中可以归纳出以下结论:
① 它们都过点,除原点外,任何幂函数图像与坐标轴都不相交,任何幂函数图像都不过第四象限.
② 时,幂函数图像过原点且在上是增函数.
③ 时,幂函数图像不过原点且在上是减函数.
④ 任何两个幂函数最多有三个公共点.
奇函数
偶函数
非奇非偶函数
O
x
y
O
x
y
O
x
y
O
x
y
O
x
y
O
x
y
O
x
y
O
x
y
O
x
y
x
O
y
例1、 右图为幂函数在第一象限的图像,则的大小关系是 ( )
解:取,由图像可知:,,应选.
三.两类基本函数的归纳比较:
① 定义
对数函数的定义:一般地,我们把函数(>0且≠1)叫做对数函数,其中是自变量,函数的定义域是(0,+∞).
幂函数的定义:一般地,形如(R)的函数称为幂孙函数,其中是自变量,是常数.
②性质
对数函数的性质:定义域:(0,+∞);值域:R;
过点(1,0),即当=1,=0;
在(0,+∞)上是增函数;在(0,+∞)是上减函数
幂函数的性质:所有的幂函数在(0,+∞)都有定义,
图象都过点(1,1)>0时,幂函数的图象都通过原点,
在[0,+∞]上,、、、是增函数,
在(0,+∞)上, 是减函数。
例1.已知函数,当 为何值时,:
(1)是幂函数;(2)是幂函数,且是上的增函数;(3)是正比例函数;(4)是反比例函数;(5)是二次函数;
简解:(1)或(2)(3)(4)(5)
变式训练:已知函数,当 为何值时,在第一象限内它的图像是上升曲线。
简解:解得:
小结与拓展:要牢记幂函数的定义,列出等式或不等式求解。
例2.比较大小:
(1) (2)(3)(4)
解:(1)∵在上是增函数,,∴
(2)∵在上是增函数,,∴
(3)∵在上是减函数,,∴;
∵是增函数,,∴;
综上,
(4)∵,,,∴
例1 求下列函数的单调区间: y=log4(x2-4x+3)
解法一:设 y=log4u,u=x2-4x+3.由
u>0,
u=x2-4x+3,
解得原复合函数的定义域为x<1或x>3.
当x∈(-∞,1)时,u=x2-4x+3为减函数,而y=log4u为增函数,所以(-∞,1)是复合函数的单调减区间;当x∈(3,±∞)时,u=x2-4x+3为增函数y=log4u为增函数,所以,(3,+∞)是复合函数的单调增区间.
解法二:u=x2-4x+3=(x-2)2-1,
x>3或x<1,(复合函数定义域)
x<2 (u减)
解得x<1.所以x∈(-∞,1)时,函数u单调递减.
由于y=log4u在定义域内是增函数,所以由引理知:u=(x-2)2-1的单调性与复合函数的单调性一致,所以(-∞,1)是复合函数的单调减区间.下面我们求一下复合函数的单调增区间.
u=x2-4x+3=(x-2)2-1,
x>3或x<1,(复合函数定义域)
x>2 (u增)
解得x>3.所以(3,+∞)是复合函数的单调增区间.
例2 求下列复合函数的单调区间: y=log (2x-x2)
解: 设 y=logu,u=2x-x2.由
u>0
u=2x-x2
解得原复合函数的定义域为0<x<2.
由于y=logu在定义域(0,+∞)内是减函数,所以,原复合函数的单调性与二次函数u=2x-x2的单调性正好相反.
易知u=2x-x2=-(x-1)2+1在x≤1时单调增.由
0<x<2 (复合函数定义域)
x≤1,(u增)
解得0<x≤1,所以(0,1]是原复合函数的单调减区间.
又u=-(x-1)2+1在x≥1时单调减,由
x<2, (复合函数定义域)
x≥1, (u减)
解得1≤x<2,所以[1,2)是原复合函数的单调增区间.
例3、求y=的单调区间.
解: 设y=,u=7-6x-x2,由
u≥0,
u=7-6x-x2
解得原复合函数的定义域为-7≤x≤1.
因为y=在定义域[0+∞]内是增函数,所以由引理知,原复合函数的单调性与二次函数u=-x2-6x+7的单调性相同.
易知u=-x2-6x+7=-(x+3)2+16在x≤-3时单调增加。由
-7≤x≤1,(复合函数定义域)
x≤-3,(u增)
解得-7≤x≤-3.所以[-7,3]是复合函数的单调增区间.
易知u=-x2-6x+7=-(x+3)2+16在x≥-3时单调减,由
-7≤x≤1 (复合函数定义域)
x≥-3, (u减)
解得-3≤x≤1,所以[-3,1]是复合函数的单调减区间.
例4 求y=的单调区间.
解 : 设y=.由 u∈R, u=x2-2x-1,解得原复合函数的定义域为x∈R.
因为y=在定义域R内为减函数,所以由引理知,二次函数u=x2-2x-1的单调性与复合函数的单调性相反.
易知,u=x2-2x-1=(x-1)2-2在x≤1时单调减,由
x∈R, (复合函数定义域)
x≤1, (u减)
解得x≤1.所以(-∞,1]是复合函数的单调增区间.同理[1,+∞)是复合函数的单调减区间.
注意:单调区间必须是定义域的子集,当我们求单调区间时,必须先求出原复合函数的定义域.另外,咱们刚刚学习复合函数的单调性,做这类题目时,一定要按要求做,不要跳步.
练习
求下列复合函数的单调区间.
1.y=log3(x2-2x);(答:(-∞,0)是单调减区间,(2,+∞)是单调增区间.)
2.y=log(x2-3x+2);(答:(-∞,1)是单调增区间,(2,+∞)是单调减区间.)
3.y=,(答:[2,是单调增区间,][,3]是单调减区间.)
4.y=;(答:(-∞,0),(0,+∞)均为单调增区间.注意,单调区间之间不可以取并集.)
5.y=;(答(-∞,0)为单调增区间,(0,+∞)为单调减区间)
6.y=,(答(-∞,+∞)为单调减区间.)
7.y=;(答:(0,+∞)为单调减区间.)
8.y=;(答:(0,2)为单调减区间,(2,4)为单调增区间.)
9.y=;(答:(0,3)为单调减区间,(3,6)为单调增区间.)
10.y=;(答(-∞,1)为单调增区间,(1,+∞)为单调减区间.)
展开阅读全文