1、机电工程学院 机械设计制造及自动化(机械制造)目录设计任务书3传动方案的拟订及说明3电动机的选择3计算传动装置的运动和动力参数5传动件的设计计算7轴的设计计算。16滚动轴承的选择及计算.。38键联接的选择及校核计算.。42联轴器的选择。43减速器附件的选择。.44润滑与密封。44设计小结.44参考资料目录。.45设计计算及说明结果一、 设计任务书设计一用于带式运输机上的圆锥圆柱齿轮减速器,已知带式运输机驱动卷筒的圆周力(牵引力)F=2100N,带速v=1。3m/s,卷筒直径D=320mm,输送机常温下经常满载,空载起动,工作有轻震,不反转。工作寿命10年(设每年工作300天),一班制。二、传动
2、方案的拟订及说明计算驱动卷筒的转速选用同步转速为1000r/min或1500r/min的电动机作为原动机,因此传动装置总传动比约为13。根据总传动比数值,可拟定以下传动方案:图一三、 选择电动机1)电动机类型和结构型式按工作要求和工作条件,选用一般用途的Y(IP44)系列三相异步电动机.它为卧式封闭结构.设计计算及说明结果2)电动机容量(1)卷筒的输出功率(2)电动机输出功率传动装置的总效率式中、为从电动机至卷筒轴的各传动机构和轴承的效率.由机械设计(机械设计基础)课程设计表24查得:V带传动=0.96;滚动轴承=0。988;圆柱齿轮传动=0。97;圆锥齿轮传动=0。96;弹性联轴器=0。99
3、;卷筒轴滑动轴承=0.96;则故 (3)电动机额定功率由机械设计(机械设计基础)课程设计表201选取电动机额定功率.3)电动机的转速推算电动机转速可选范围,由机械设计(机械设计基础)课程设计表21查得带传动常用传动比范围,单级圆柱齿轮传动比范围,圆锥齿轮传动比范围,则电动机转速可选范围为:设计计算及说明结果初选同步转速分别为1000r/min和1500r/min的两种电动机进行比较,如下表:方案电动机型号额定功率()电动机转速(r/min)电动机质量(kg)同步满载1Y132M1641000960732Y112M-441500144043传动装置的传动比总传动比V带传动二级减速器12。373.
4、13.9918.564。644两方案均可行,但方案1传动比较小,传动装置结构尺寸较小,因此采用方案1,选定电动机的型号为Y132M1-64)电动机的技术数据和外形,安装尺寸由机械设计(机械设计基础)课程设计表20-1、表202查得主要数据,并记录备用。四、计算传动装置的运动和动力参数1)传动装置总传动比2)分配各级传动比因为是圆锥圆柱齿轮减速器,所以圆锥圆柱齿轮减速器传动比设计计算及说明结果3)各轴转速(轴号见图一)4)各轴输入功率按电动机所需功率计算各轴输入功率,即5)各轴转矩项目轴1轴2轴3轴4轴5转速(r/min)96096031077.677。6功率(kw)3。363.293。163。
5、022.98转矩(Nm)33。4332。7397。35371.66366.74传动比113。13.991效率10.9780。960.9580.988设计计算及说明结果五、传动件的设计计算圆锥直齿轮设计已知输入功率,小齿轮转速960r/min,齿数比u=3.1,由电动机驱动,工作寿命10年(设每年工作300天),一班制,带式输送机工作经常满载,空载起动,工作有轻震,不反转。1、 选定齿轮精度等级、材料及齿数1) 圆锥圆柱齿轮减速器为通用减速器,速度不高,故选用7级精度(GB1009588)2) 材料选择 由机械设计(第八版)表10-1选择小齿轮材料为(调质),硬度为280HBS,大齿轮材料为45
6、钢(调质),硬度为240HBS。3) 选小齿轮齿数,大齿轮齿数,取整。则2、 按齿面接触强度设计由设计计算公式进行试算,即(1) 确定公式内的各计算数值1) 试选载荷系数2) 计算小齿轮的转矩3) 选齿宽系数设计计算及说明结果4)由机械设计(第八版)图10-21d按齿面硬度查得小齿轮的接触疲劳强度极限,大齿轮的接触疲劳强度极限5)由机械设计(第八版)表10-6查得材料的弹性影响系数6) 计算应力循环次数7) 由机械设计(第八版)图10-19取接触疲劳寿命系数8) 计算接触疲劳许用应力取失效概率为1,安全系数S=1,得(2) 计算1) 试算小齿轮分度圆直径,代入中较小的值2) 计算圆周速度v设计
7、计算及说明结果3) 计算载荷系数根据,7级精度,由机械设计(第八版)图108查得动载系数直齿轮由机械设计(第八版)表102查得使用系数根据大齿轮两端支撑,小齿轮作悬臂布置,查机械设计(第八版)表得轴承系数,则接触强度载荷系数4) 按实际的载荷系数校正所算得的分度圆直径,得5) 计算模数m取标准值6) 计算齿轮相关参数7) 圆整并确定齿宽圆整取,设计计算及说明结果3、 校核齿根弯曲疲劳强度1) 确定弯曲强度载荷系数2) 计算当量齿数3) 由机械设计(第八版)表105查得齿形系数应力校正系数4) 由机械设计(第八版)图2020c查得小齿轮的弯曲疲劳强度极限,大齿轮的弯曲疲劳强度极限5) 由机械设计
8、(第八版)图10-18取弯曲疲劳寿命系数6) 计算弯曲疲劳许用应力取弯曲疲劳安全系数,得7)校核弯曲强度设计计算及说明结果根据弯曲强度条件公式进行校核满足弯曲强度,所选参数合适.圆柱斜齿轮设计已知输入功率,小齿轮转速310r/min,齿数比u=4,由电动机驱动,工作寿命10年(设每年工作300天),一班制,带式输送机工作经常满载,空载起动,工作有轻震,不反转。1、 选定齿轮精度等级、材料及齿数1) 圆锥圆柱齿轮减速器为通用减速器,速度不高,故选用7级精度(GB10095-88)2) 材料选择 由机械设计(第八版)表101选择大小齿轮材料均为45钢(调质),小齿轮齿面硬度为250HBS,大齿轮齿
9、面硬度为220HBS。3) 选小齿轮齿数,大齿轮齿数4) 选取螺旋角。初选螺旋角 2、按齿面接触强度设计,设计计算及说明结果由设计计算公式进行试算,即(1) 确定公式内的各计算数值1) 试选载荷系数2) 计算小齿轮的转矩3) 选齿宽系数4) 由机械设计(第八版)图1030选取区域系数5) 由机械设计(第八版)图1026查得,,则6) 由机械设计(第八版)表106查得材料的弹性影响系数7) 计算应力循环次数8) 由机械设计(第八版)图10-21d按齿面硬度查得小齿轮的接触疲劳强度极限,大齿轮的接触疲劳强度极限9) 由机械设计(第八版)图10-19取接触疲劳寿命系数设计计算及说明结果10)计算接触
10、疲劳许用应力取失效概率为1,安全系数S=1,得(2)计算1)试算小齿轮分度圆直径,由计算公式得2) 计算圆周速度v3) 计算齿宽b及模数4) 计算纵向重合度5)计算载荷系数设计计算及说明结果根据,7级精度,由机械设计(第八版)图108查得动载系数由机械设计(第八版)表10-3查得由机械设计(第八版)表102查得使用系数由机械设计(第八版)表1013查得 由机械设计(第八版)表10-4查得接触强度载荷系数6)按实际的载荷系数校正所算得的分度圆直径,得7) 计算模数取8) 几何尺寸计算(1) 计算中心距(2) 按圆整后的中心距修正螺旋角因值改变不多,故参数、等不必修正(3)计算大小齿轮的分度圆直径
11、设计计算及说明结果(4)计算齿轮宽度圆整后取 3、 校核齿根弯曲疲劳强度1) 确定弯曲强度载荷系数2) 根据重合度,由机械设计(第八版)图1028查得螺旋角影响系数3) 计算当量齿数4)由机械设计(第八版)表105查得齿形系数应力校正系数5) 由机械设计(第八版)图2020c查得小齿轮的弯曲疲劳强度极限,大齿轮的弯曲疲劳强度极限6)由机械设计(第八版)图10-18取弯曲疲劳寿命系数 设计计算及说明结果7) 计算弯曲疲劳许用应力取弯曲疲劳安全系数,得8) 校核弯曲强度根据弯曲强度条件公式进行校核满足弯曲强度,所选参数合适。六、轴的设计计算输入轴设计1、求输入轴上的功率、转速和转矩2、求作用在齿轮
12、上的力已知高速级小圆锥齿轮的分度圆半径为设计计算及说明结果而圆周力、径向力及轴向力的方向如图二所示图二设计计算及说明结果3、 初步确定轴的最小直径先初步估算轴的最小直径。选取轴的材料为45钢(调质),根据机械设计(第八版)表15-3,取,得,输入轴的最小直径为安装联轴器的直径,为了使所选的轴直径与联轴器的孔径相适应,故需同时选取联轴器型号。联轴器的计算转矩,查机械设计(第八版)表141,由于转矩变化很小,故取,则查机械设计(机械设计基础)课程设计表17-4,选HL1型弹性柱销联轴器,其公称转矩为160000,半联轴器的孔径,故取,半联轴器长度,半联轴器与轴配合的毂孔长度为38mm。4、 轴的结
13、构设计(1) 拟定轴上零件的装配方案(见图三)图三设计计算及说明结果(2) 根据轴向定位的要求确定轴的各段直径和长度1) 为了满足半联轴器的轴向定位,1-2轴段右端需制出一轴肩,故取2-3段的直径2) 初步选择滚动轴承.因轴承同时受有径向力和轴向力,故选用单列圆锥滚子轴承,参照工作要求并根据,由机械设计(机械设计基础)课程设计表15-7中初步选取0基本游隙组,标准精度级的单列圆锥滚子轴承30306,其尺寸为,而.这对轴承均采用轴肩进行轴向定位,由机械设计(机械设计基础)课程设计表15-7查得30306型轴承的定位轴肩高度,因此取3)取安装齿轮处的轴段6-7的直径;为使套筒可靠地压紧轴承, 56
14、段应略短于轴承宽度,故取。4)轴承端盖的总宽度为20mm。根据轴承端盖的装拆及便于对轴承添加润滑油 的要求,求得端盖外端面与半联轴器右端面间的距离,故取5)锥齿轮轮毂宽度为64。86mm,为使套筒端面可靠地压紧齿轮取。6) 由于,故取(3) 轴上的周向定位圆锥齿轮的周向定位采用平键连接,按由机械设计(第八版)表6-1查得平键截面,键槽用键槽铣刀加工,长为50mm,同时为保设计计算及说明结果证齿轮与轴配合有良好的对中性,故选择齿轮轮毂与轴的配合为;滚动轴承与轴的周向定位是由过渡配合来保证的,此处选轴的尺寸公差为k6。(4) 确定轴上圆角和倒角尺寸取轴端倒角为5、 求轴上的载荷载荷水平面H垂直面V
15、支反力F弯矩M 总弯矩扭矩T6、按弯扭合成应力校核轴的强度根据上表中的数据及轴的单向旋转,扭转切应力为脉动循环变应力,取,轴的计算应力前已选定轴的材料为45钢(调质),由机械设计(第八版)表15-1查得,故安全。6、 精确校核轴的疲劳强度(1) 判断危险截面截面5右侧受应力最大(2)截面5右侧设计计算及说明结果抗弯截面系数抗扭截面系数截面5右侧弯矩M为截面5上的扭矩为截面上的弯曲应力截面上的扭转切应力轴的材料为45钢,调质处理。由表151查得。截面上由于轴肩而形成的理论应力集中系数及按机械设计(第八版)附表3-2查取.因,经插值后查得又由机械设计(第八版)附图3-2可得轴的材料敏感系数为故有效
16、应力集中系数为设计计算及说明结果由机械设计(第八版)附图3-2的尺寸系数,扭转尺寸系数。轴按磨削加工,由机械设计(第八版)附图34得表面质量系数为轴未经表面强化处理,即,则综合系数为又取碳钢的特性系数计算安全系数值故可知安全。中间轴设计1、求中间轴上的功率、转速和转矩设计计算及说明结果2、求作用在齿轮上的力已知圆柱斜齿轮的分度圆半径而已知圆锥直齿轮的平均分度圆半径而圆周力、,径向力、及轴向力、的方向如图四所示设计计算及说明结果图四3、初步确定轴的最小直径先初步估算轴的最小直径。选取轴的材料为(调质),根据机械设计(第八版)表153,取,得,中间轴最小直径显然是安装滚动轴承的直径和设计计算及说明
17、结果4、 轴的结构设计(1) 拟定轴上零件的装配方案(见下图图五)(2)根据轴向定位的要求确定轴的各段直径和长度1)初步选择滚动轴承。因轴承同时受有径向力和轴向力,故选用单列圆锥滚子轴承,参照工作要求并根据,由机械设计(机械设计基础)课程设计表15-7中初步选取0基本游隙组,标准精度级的单列圆锥滚子轴承30306,其尺寸为,. 这对轴承均采用套筒进行轴向定位,由机械设计(机械设计基础)课程设计表15-7查得30306型轴承的定位轴肩高度,因此取套筒直径.2)取安装齿轮的轴段,锥齿轮左端与左轴承之间采用设计计算及说明结果套筒定位,已知锥齿轮轮毂长,为了使套筒端面可靠地压紧端面,此轴段应略短于轮毂
18、长,故取,齿轮的右端采用轴肩定位,轴肩高度,故取,则轴环处的直径为。3) 已知圆柱直齿轮齿宽,为了使套筒端面可靠地压紧端面,此轴段应略短于轮毂长,故取.4)箱体一小圆锥齿轮中心线为对称轴,则取。(3)轴上的周向定位圆锥齿轮的周向定位采用平键连接,按由机械设计(第八版)表61查得平键截面,键槽用键槽铣刀加工,长为22mm,同时为保证齿轮与轴配合有良好的对中性,故选择齿轮轮毂与轴的配合为;圆柱齿轮的周向定位采用平键连接,按由机械设计(第八版)表61查得平键截面,键槽用键槽铣刀加工,长为56mm,同时为保证齿轮与轴配合有良好的对中性,故选择齿轮轮毂与轴的配合为;滚动轴承与轴的周向定位是由过渡配合来保
19、证的,此处选轴的尺寸公差为m6。(4)确定轴上圆角和倒角尺寸取轴端倒角为5、 求轴上的载荷设计计算及说明结果载荷水平面H垂直面V支反力F弯矩M 总弯矩扭矩T6、按弯扭合成应力校核轴的强度根据上表中的数据及轴的单向旋转,扭转切应力为脉动循环变应力,取,轴的计算应力前已选定轴的材料为(调质),由机械设计(第八版)表151查得,故安全。7、精确校核轴的疲劳强度(1)判断危险截面截面5左右侧受应力最大(2)截面5右侧抗弯截面系数抗扭截面系数设计计算及说明结果截面5右侧弯矩M为截面5上的扭矩为截面上的弯曲应力截面上的扭转切应力轴的材料为,调质处理。由表15-1查得。截面上由于轴肩而形成的理论应力集中系数
20、及按机械设计(第八版)附表32查取。因,经插值后查得又由机械设计(第八版)附图32可得轴的材料敏感系数为故有效应力集中系数为由机械设计(第八版)附图3-2的尺寸系数,扭转尺寸系数。轴按磨削加工,由机械设计(第八版)附图3-4得表面质量系数为设计计算及说明结果轴未经表面强化处理,即,则综合系数为又取合金钢的特性系数计算安全系数值故可知安全。(3)截面5左侧抗弯截面系数抗扭截面系数截面5左侧弯矩M为设计计算及说明结果截面5上的扭矩为截面上的弯曲应力截面上的扭转切应力过盈配合处的,由机械设计(第八版)附表38用插值法求出,并取,于是得轴按磨削加工,由机械设计(第八版)附图3-4得表面质量系数为故得综
21、合系数为计算安全系数值设计计算及说明结果故可知安全。输出轴设计1、求输出轴上的功率、转速和转矩2、求作用在齿轮上的力已知圆柱斜齿轮的分度圆半径而圆周力、径向力及轴向力的方向如图六所示设计计算及说明结果图六设计计算及说明结果3、初步确定轴的最小直径先初步估算轴的最小直径.选取轴的材料为45钢(调质),根据机械设计(第八版)表15-3,取,得,输出轴的最小直径为安装联轴器的直径,为了使所选的轴直径与联轴器的孔径相适应,故需同时选取联轴器型号。联轴器的计算转矩,查机械设计(第八版)表141,由于转矩变化很小,故取,则查机械设计(机械设计基础)课程设计表17-4,选HL3型弹性柱销联轴器,其公称转矩为
22、630000,半联轴器的孔径,故取,半联轴器长度,半联轴器与轴配合的毂孔长度为84mm。4、 轴的结构设计(1) 拟定轴上零件的装配方案(见图六)设计计算及说明结果图六(2)根据轴向定位的要求确定轴的各段直径和长度1)为了满足半联轴器的轴向定位,1-2轴段右端需制出一轴肩,故取23段的 直径,左端用轴端挡圈定位,按轴端挡圈直径, 半联轴器与轴配合的毂孔长度,为了保证轴端挡圈只压在半联 轴器上而不压在轴的端面上,故1-2段的长度应比略短些,现取 。2) 初步选择滚动轴承.因轴承同时受有径向力和轴向力,故选用单列圆锥滚子轴承,参照工作要求并根据,由机械设计(机械设计基础)课程设计表15-7中初步选
23、取0基本游隙组,标准精度级的单列圆锥滚子轴承30310,其尺寸为,,而。左端轴承采用轴肩进行轴向定位,由机械设计(机械设计基础)课程设计计算及说明结果表157查得30310型轴承的定位轴肩高度,因此取;齿轮右端和右轴承之间采用套筒定位,已知齿轮轮毂的宽度为71mm,为了使套筒端面可靠地压紧齿轮,此轴段应略短于轮毂宽度,故取.齿轮的左端采用轴肩定位,轴肩高度,故取,则轴环处的直径为.轴环宽度,取。4)轴承端盖的总宽度为20mm,根据轴承端盖的装拆及便于对轴承添加润滑油的要求,求得端盖外端面与半联轴器右端面间的距离,故取5)箱体一小圆锥齿轮中心线为对称轴,则取。(3)轴上的周向定位齿轮、半联轴器的
24、周向定位均采用平键连接,按由机械设计(第八版)表61查得平键截面,键槽用键槽铣刀加工,长为50mm,同时为保证齿轮与轴配合有良好的对中性,故选择齿轮轮毂与轴的配合为;同样,半联轴器与轴的连接,选用平键,半联轴器与轴的配合为,滚动轴承与轴的周向定位是由过渡配合来保证的,此处选轴的尺寸公差为k6。(4)确定轴上圆角和倒角尺寸取轴端倒角为5、求轴上的载荷设计计算及说明结果载荷水平面H垂直面V支反力F弯矩M 总弯矩扭矩T6、按弯扭合成应力校核轴的强度根据上表中的数据及轴的单向旋转,扭转切应力为脉动循环变应力,取,轴的计算应力前已选定轴的材料为45钢(调质),由机械设计(第八版)表151查得,故安全.7
25、、精确校核轴的疲劳强度(1)判断危险截面截面7右侧受应力最大(2)截面7右侧抗弯截面系数抗扭截面系数设计计算及说明结果截面7右侧弯矩M为截面7上的扭矩为截面上的弯曲应力截面上的扭转切应力轴的材料为45钢,调质处理。由表151查得。截面上由于轴肩而形成的理论应力集中系数及按机械设计(第八版)附表32查取。因,,经插值后查得又由机械设计(第八版)附图3-2可得轴的材料敏感系数为故有效应力集中系数为由机械设计(第八版)附图32的尺寸系数,扭转尺寸系数。轴按磨削加工,由机械设计(第八版)附图34得表面质量系数为设计计算及说明结果轴未经表面强化处理,即,则综合系数为又取碳钢的特性系数计算安全系数值故可知
26、安全。七、滚动轴承的选择及计算输入轴滚动轴承计算初步选择滚动轴承,由机械设计(机械设计基础)课程设计表157中初步选取0基本游隙组,标准精度级的单列圆锥滚子轴承30306,其尺寸为, ,,载荷水平面H垂直面V支反力F则设计计算及说明结果则则则,则则故合格。中间轴滚动轴承计算初步选择滚动轴承,由机械设计(机械设计基础)课程设计表15-7中初步选取0基本游隙组,标准精度级的单列圆锥滚子轴承30306,其尺寸为,,,载荷水平面H垂直面V支反力F设计计算及说明结果则则则则,则则故合格。输出轴轴滚动轴承计算初步选择滚动轴承,由机械设计(机械设计基础)课程设计表15-7中初步选取0基本游隙组,标准精度级的
27、单列圆锥滚子轴承30310,其尺寸为,,设计计算及说明结果载荷水平面H垂直面V支反力F则则则则,则则故合格设计计算及说明结果八、键联接的选择及校核计算输入轴键计算1、 校核联轴器处的键连接该处选用普通平键尺寸为,接触长度,则键联接所能传递的转矩为:,故单键即可。2、 校核圆锥齿轮处的键连接该处选用普通平键尺寸为,接触长度,则键联接所能传递的转矩为:,故单键即可。中间轴键计算1、 校核圆锥齿轮处的键连接该处选用普通平键尺寸为,接触长度,则键联接所能传递的转矩为:,故单键即可.2、 校核圆柱齿轮处的键连接该处选用普通平键尺寸为,接触长度,则键联接所能传递的转矩为:设计计算及说明结果,故单键即可。输
28、出轴键计算1、 校核联轴器处的键连接该处选用普通平键尺寸为,接触长度,则键联接所能传递的转矩为:,故单键即可。2、 校核圆柱齿轮处的键连接该处选用普通平键尺寸为,接触长度,则键联接所能传递的转矩为:,故单键即可。九、联轴器的选择在轴的计算中已选定联轴器型号。输入轴选HL1型弹性柱销联轴器,其公称转矩为160000,半联轴器的孔径,故取,半联轴器长度,半联轴器与轴配合的毂孔长度为38mm。输出轴选选HL3型弹性柱销联轴器,其公称转矩为630000,半联轴器的孔径,故取,半联轴器长度,半联轴器与轴配合的毂孔长度为84mm。设计计算及说明结果十、减速器附件的选择由机械设计(机械设计基础)课程设计选定
29、通气帽,A型压配式圆形油标A20(GB1160。189),外六角油塞及封油垫,箱座吊耳,吊环螺钉M12(GB82588),启盖螺钉M8.十一、润滑与密封齿轮采用浸油润滑,由机械设计(机械设计基础)课程设计表16-1查得选用N220中负荷工业齿轮油(GB5903-86)。当齿轮圆周速度时,圆锥齿轮浸入油的深度约一个齿高,三分之一齿轮半径,大齿轮的齿顶到油底面的距离3060mm。由于大圆锥齿轮,可以利用齿轮飞溅的油润滑轴承,并通过油槽润滑其他轴上的轴承,且有散热作用,效果较好。密封防止外界的灰尘、水分等侵入轴承,并阻止润滑剂的漏失。十二、设计小结这次关于带式运输机上的两级圆锥圆柱齿轮减速器的课程设
30、计是我们真正理论联系实际、深入了解设计概念和设计过程的实践考验,对于提高我们机械设计的综合素质大有用处。通过两个星期的设计实践,使我对机械设计有了更多的了解和认识.为我们以后的工作打下了坚实的基础。机械设计是机械工业的基础,是一门综合性相当强的技术课程,它融机械原理、机械设计、理论力学、材料力学、互换性与技术测量、工程材料、机械设计(机械设计基础)课程设计等于一体.这次的课程设计,对于培养我们理论联系实际的设计思想、训练综合运用机械设计和有关先修课程的理论,结合生产实际反应和解决工程实际问题的能力,巩固、加深和扩展有关机械设计方面的知识等方面有重要的作用。本次设计得到了指导老师的细心帮助和支持
31、。衷心的感谢老师的指导和帮助。设计计算及说明结果设计计算及说明结果一、设计任务书1。1传动方案示意图 图一、传动方案简图 1.2原始数据传送带拉力F(N)传送带速度V(m/s)滚筒直径D(mm)25001。62801.3工作条件 三班制,使用年限为10年,连续单向于运转,载荷平稳,小批量生产,运输链速度允许误差为链速度的.1.4工作量 1、传动系统方案的分析; 2、电动机的选择与传动装置运动和动力参数的计算; 3、传动零件的设计计算; 4、轴的设计计算; 5、轴承及其组合部件选择和轴承寿命校核; 6、键联接和联轴器的选择及校核; 7、减速器箱体,润滑及附件的设计; 8、装配图和零件图的设计;
32、9、设计小结; 10、参考文献;二、传动系统方案的分析传动方案见图一,其拟定的依据是结构紧凑且宽度尺寸较小,传动效率高,适用在恶劣环境下长期工作,虽然所用的锥齿轮比较贵,但此方案是最合理的.其减速器的传动比为8-15,用于输入轴于输出轴相交而传动比较大的传动。三、电动机的选择与传动装置运动和动力参数的计算 设计计算及说明结果3.1 电动机的选择 1、电动机类型选择:选择电动机的类型为三相异步电动机,额定电压交流380V。 2、电动机容量选择: (1)工作机所需功率=FV/1000 F-工作机阻力 v-工作机线速度 工作机效率可取0。96 (2) 电动机输出功率 考虑传动装置的功率损耗,电动机的
33、输出功率为 =/ 为从电动机到工作机主动轴之间的总效率,即 =0.833 滚动轴承传动效率取0。99 圆锥齿轮传动效率取0。95 圆柱齿轮传动效率取0.97 -联轴器效率取0.99 卷筒效率取0。96 = (3)确定电动机的额定功率 因载荷平稳,电动机额定功率略大于即可。所以可以暂定电动机的额定功率为5。5Kw。 3、确定电动机转速 卷筒工作转速 =601000V/D=60X1000X1.6/3。14X280=109.2r/min 由于两级圆锥圆柱齿轮减速器一般传动比为815,故电动机的转速的可选范围为 =(8-15) =873.61638r/min. 可见同步转速为1000r/min ,15
34、00r/min 的电动机都符合,这里初选同步转速为1000r/min ,1500r/min的两种电动机进行比较,而转速越高总传动比越大传动装置的结构会越大,成本越高。所以应综合考虑电动机和传动装置的尺寸、重量、价格及总传动比。 设计计算及说明F=2500NV=1。6m/s=0.833=5kw=5.5kw=109。2r/min 结果 表2 电动机方案比较表(指导书 表19-1)方案电动机型号额定功率(kw)电动机转速(r/min)电动机质量(kg)传动装置总传动比同步满载1Y132M265。51000960738.792Y132S-45.5150014404313.19 由表中数据可知,方案1的
35、总传动比小,传种装置结构尺寸小,因此可采用方案1,选定电动机型号为Y132M263.2传动装置总传动比的计算和各级传动比的分配 1、传动装置总传动比 =960/109。2=8.79 2、分配各级传动比高速级为圆锥齿轮其传动比应小些约,低速级为圆柱齿轮传动其传动比可大些。所以可取 =2。2 =43.3计算传动装置的运动和动力参数 1、各轴的转速(各轴的标号均已在图中标出) =960r/min =960/202=436.36r/min /=436。36/4=109.2r/min =109.2r/min 2、各轴输入功率 =4。95kw 。 =4。655kw =4。47kw =.=4。38kw 3、
36、各轴转矩 =49.24N。m 设计计算及说明选Y132M2-6型电动机 =2。2 =4=960=436。36=109.2r/min=4.95 kw=4。65 kw=4。47 kw=4。38 kw 结果 =101.88N。m =390。92N.m =383.04N.M 将计算结果汇总列表如下表3 轴的运动及动力参数项目电动机轴高速级轴I中间轴II低速级轴III工作机轴IV转速(r/min)960960436.36109。2109。2功率(kw)54.954。6554.474.382转矩()49。7649。24101。88390.92383.04传动比12。24。01效率0。990。940。960
37、。98四、传动零件的设计计算4.1斜齿圆柱齿轮传动的设计(主要参照教材机械设计(第八版)已知输入功率为=4。655kw、小齿轮转速为=436。36r/min、齿数比为4.工作寿命10年(设每年工作300天),三班制,带式输送,工作平稳,转向不变. 1、选定齿轮类型、精度等级、材料及齿数 (1)运输机为一般工作机器,速度不高,故选用7级精度.(GB10095-88) (2)材料选择 由机械设计(第八版)表10-1小齿轮材料为40Cr(调质),硬度为280HBS,大齿轮材料为45钢(调质),硬度为240HBS,二者材料硬度相差40HBS.(3) 选小齿轮齿数,则大齿轮齿数 初选螺旋角。 2、按齿面
38、接触疲劳强度计算按下式设计计算 设计计算及说明小齿轮:40Cr(调质)280 HBS大齿轮: 45钢(调质) 240 HBS7级精度结果(1)确定公式内的各计算数值1) 试选载荷系数=1.62) 查教材图表(图1030)选取区域系数=2。4353) 查教材表10-6选取弹性影响系数=189。8 4) 查教材图表(图1026)得 =0.765 =0.88 =1.6455) 由教材公式1013计算应力值环数N=60nj =60436.361(3830010)=1。88510h N=0。471X10h6) 查教材1019图得:K=0.9 K=0。957) 查取齿轮的接触疲劳强度极限650Mpa 55
39、0Mpa 8) 由教材表10-7查得齿宽系数=19) 小齿轮传递的转矩=95.510=9550X4655/436。36=101.88N.m10) 齿轮的接触疲劳强度极限:取失效概率为1%,安全系数S=1,应用公式(1012)得:=0.9650=585 =0.95550=522。5 许用接触应力为 (2) 设计计算1) 按式计算小齿轮分度圆直径 =2) 计算圆周速度1.27m/s3) 计算齿宽b及模数 设计计算及说明=1。6=2。435=189。8=1。645K=0.9 K=0.95650Mpa 550Mpa=1T=101.88N。m=553.75 MPaV=1.27m/ 结果 b=1.5567
40、=55。67mm =4) 计算齿宽与高之比 齿高h= =2.252。455=5.24 = =10。625) 计算纵向重合度 =0。318tan=0。318X1X22tan=1.7446) 计算载荷系数K 系数=1,根据V=1.27m/s,7级精度查图表(图10-8)得动载系数=1.08 查教材图表(表103)得齿间载荷分布系数=1.4 由教材图表(表104)查得=1.420 查教材图表(图1013)得=1.32 所以载荷系数 =2。1477) 按实际载荷系数校正所算得的分度圆直径 =8) 计算模数 = 3、按齿根弯曲疲劳强度设计 由弯曲强度的设计公式设计(1) 确定公式内各计算数值1) 计算载荷系数 =1。992) 根据纵向重合度=1.744 查教材图表(图1028)查得螺旋影响系数=0。883) 计算当