资源描述
课程名称:建筑环境测试技术
教 案
200 8~ 2009 学年第 1 学期
院 (部) 热能工程学院
教 研 室 基础教研室
授 课 专 业 班 级 暖本061- 065
主 讲 教 师 李慧
教 师 职 称 副教授
教 材 名 称 建筑环境测试技术
热 能 工 程 学 院
第 1 次课的教学整体安排
授课时间
第 1 周周 2 第 5、6、7节
课时安排
3
授课题目(教学章、节或主题):第一章:测量的基本知识
教学目的、要求(分掌握、理解、了解三个层次):
目的:掌握测量的基本知识
要求:掌握测量的基本概念;理解测量系统的组成、仪表的性能指标;了解计量的基本概念.
教学内容(包括基本内容、重点、难点)
基本内容:这一章是本课程的基础,主要讲授测量、测量仪表的基本概念、测量方法及测量方法的选择、测量仪表的类型、功能和性能指标。
重点:仪表误差的计算、测量系统的组成。
难点:如何根据测量需要正确选择仪表,主要指仪表量程和精度的选择。
讨论与思考:
1。 按照测量手段进行分类,测量通常分为哪几种类型?
2. 按照测量方式进行分类,测量通常分为哪几种类型?
3。 测量系统由哪几个环节组成?
4。 仪表的性能指标有哪些?
5. 如何进行仪表的正确选择?
课后作业:
1、某蒸汽供热系统的蒸汽压力控制指标为1。5Mpa,要求指示误差不大于+0。05Mpa,现用一只刻度范围为0~2.5Mpa,精度等级为2.5级的压力表,是否满足使用要求?为什么?应选用什么级别的仪表?
2、用数字电压表测量一高内阻电路的端电压,已知高内阻电路的输出阻抗为80KΩ,输出端电压为5V,若数字电压表的内阻为240KΩ,试问数字电压表测量的电压为多少?
教学过程设计:讲授120分钟,提问与讨论15分钟
授课类型: 理论课
教学方式: 讲授 讨论
教学资源: 多媒体
填写说明:1。每项页面大小可自行添减;
2.教学内容与讨论、思考题、作业部分可合二为一。
第一章 测量的基本知识
这一章是本课程的基础,主要讲授测量、测量仪表的基本概念、测量方法及测量方法的选择、测量仪表的类型、功能和性能指标。
第一节 测量的基本概念
一.测量的定义
1.概念:测量是运用专门的工具,根据物理、化学、生物等原理,通过实验和计算找到被测量的量值。
2. 定义:测量是以同性质的标准量与被测量比较,并确定被测量相对标准量的倍数。
表达式:L=X/U
说明:①标准量应是国际或国家公认的。
②采用的方法或仪器需经验证.
二.测量方法
v按测量手段分类
1.
1. 直接测量:通过测量能直接得到被测量数值的测量。
y=x
2.间接测量:被测量不能通过直接测量的方法得到,而必须通过一个或多个直接测量值利用一定的函数关系运算才能得到。
3.组合测量:被测量不能通过直接测量或间接测量得到,而必须通过直接测量的测得值或间接测量的测得值建立联立方程组,通过求解联立方程组的办法才能得到最后结果。
公式:
举例:电阻器温度系数的测量.
在此,温度系数αβ为被测量,可通过测得在两个不同温度下的电阻值,即通过得到t1、t2、Rt1、Rt2四个直接测量值建立方程组通过计算即可得到。
若R20未知,则可联立三个方程即可。
•按测量方式分类
1.偏差法:用仪器仪表的指针的位移表示被测量大小的方法。
2.零位法:亦叫平衡法。测量时用被测量与标准量比较,不断调整标准量的大小,当指零器为0时,即可根据标准量的大小得到被测量的大小。
3.微差法:偏差法与零位法相结合即构成微差法。通过测量被测量与标准量之差来得到待测量的值。
除了以上分类方法以外,还可分为精密测量与工程测量、等精度测量与不等精度测量、本地测量与远地测量等.
三.测量方法的选择原则
①被测量本身的特性;
②被测量的准确度;
③测量环境;
④现有测量设备.
在此基础上选择合适的测量仪表和正确的测量方法。
举例:电压表测量高内阻电路端电压。
若电路输出等效内阻为80kΩ,当电压表内阻分别为10MΩ、120 kΩ,对应的数字电压表测得的电压为:
V
+
- 5V
所以当测量电路的内阻较大时,要测量电路的端电压需要选用内阻高的数字电压表。
第二节 测量仪表
一.测量系统的组成
测量系统由被测对象和测量设备组成,测量设备一般由传感器、变换器、显示装置、传输通道组成.对应的系统框图如下。
传感器
变换器
显示装置
被测量
传输通道
1.传感器:是测量系统与被测对象直接发生联系的部分。对传感器的要求:
①输入与输出有稳定而准确的单值函数关系。
②非被测量对传感器作用时,应使其对输出的影响小到忽略。
③负载效应小.(负载效应:被测量受到的仪表的干扰而产生的偏离。)
2.变换器(变送器):将传感器的输出信号转换成显示装置易于接受的信号.包括机械放大,电信号放大,电信号转换
3.显示装置:分为模拟式、数字式、屏幕式.
4.传输通道:是各仪表之间输入与输出联系的纽带.传输通道可以是导线、管道、光缆、无线电通讯等。
二.测量误差与测量精度
1.测量误差:测量值与被测量真值之差.
表示方法:绝对误差:
相对误差:
示值相对误差:
被测量真值一般无法得到,在实际中通常以实际值代替。
•分类:
①系统误差:凡是误差的数值是固定的或者按照一定规律变化的误差。
②随机误差:在测量过程中存在许多随机因素对测量造成干扰,使测得值带有大小和方向都难以预测的测量误差。
③粗大误差:明显歪曲测量结果的误差。
2.测量精度:描述测量值偏离真值的程度,与测量误差有着密切联系。由测量误差决定。
①准确度—反映系统误差大小的程度。
②精密度-反映随机误差大小的程度.
③精确度—反映系统误差和随机误差合成大小的程度。
对于测量者来说,准确度高的精密度不一定高,反之亦然。但精确度高的准确度和精密度都高。
三.测量仪表的主要性能指标
1.量程范围:仪表能够测量的最大输入量与最小输入量之间的范围称作仪表的量程范围。在数值上等于仪表上限减去仪表下限Lm.
2.仪表精度(仪表精度等级)
仪表误差
引用误差:
基本误差:
允许误差:仪表出厂之前仪表厂家规定的仪表基本误差不能超过某一个值。
仪表精度等级:允许误差去掉百分号的值定义为仪表的精度等级.
•精度等级的国家系列一般为0。01、0。02、0.04、0。05、0。1、0.2、0。5、1.0、1。5、2。5、4。0、5。0等。
结论:同一精度仪表窄量程仪表产生的绝对误差小于同一精度宽量程仪表产生的绝对误差。
举例:仪表1:量程范围0~500℃,0.5级;
仪表2:量程范围0~100℃,1.0级。
•
3.稳定性(稳定误差):是指在规定的时间、区间和其他外界条件恒定不变的情况下,仪表示值变化的大小。例如某数字温度表的稳定度为0.008%Lm+0.003Lx/8h。
4.输入电阻:例如对于数字电压表对输入阻抗有一定要求.
5.灵敏度:稳态下输出变化量对输入变化量的比值。
灵敏度的另一种表示方法为分辨率.例如某一数字温度表的分辨率为0。1℃,即该温度表能区分的最小温度变化为0.1℃。跳变一个字温度变化0。1℃。通常分辨率为允许绝对误差的1/3即可.
6.线性度:实际示值与理论示值差值的最大值与仪表量程的比值.
7.动态特性:仪表的输出响应随输入变化的能力.
第 2 次课的教学整体安排
授课时间
第 2 周周 2 第 5、6、7节
课时安排
3
授课题目(教学章、节或主题):第三章:温度测量
第一节温度测量概述
第二节:膨胀式温度计
第三节:热电偶
教学目的、要求(分掌握、理解、了解三个层次):
目的:学会温度测量方法及分类。
要求:掌握温度测量的分类,掌握液体膨胀式、固体膨胀式、压力式温度计;掌握热电偶的测量原理;理解温标;了解温度标准的传递。
教学内容(包括基本内容、重点、难点):
基本内容:本次课程开始讲授温度测量,主要讲授温度测量方法的基本分类、温度标准、液体膨胀式、固体膨胀式、压力式温度计。
重点:热力学温标、国际实用温标、热电偶的测量原理。
难点:温标、热电偶测量原理
讨论与思考:
1. 温标的三要素是什么?
2. 假设一标准热源热力学温度为100K,热力学温标如何规定300K的温度?
课后作业:
1.什么是接触法测温?什么是非接触法测温?分别有什么优缺点?
2。 玻璃管液体温度计使用注意事项是什么?
教学过程设计:讲授120分钟,提问与讨论15分钟
授课类型: 理论课
教学方式: 讲授 讨论
教学资源: 多媒体
填写说明:1。每项页面大小可自行添减;
2。教学内容与讨论、思考题、作业部分可合二为一。
第三章 温度测量
3。1 概述
一. 什么是温标?
衡量温度的标准尺度。譬如规定什么样的温度是150℃,什么样的温度是200℃
1。摄氏温标1740年瑞典人摄氏
定义
水银体膨胀是线性;
标准大气压下纯水的冰点是摄氏零度,沸点为100度,而将汞柱在这两点间等分为100格,每等分格为摄氏1度,标记为℃.
2.华氏温标
定义
1714年德国人法伦海脱以水银为测温介质,制成玻璃棒水银温度计.规定水的沸点为212度,氯化铵与冰的混合物为0度,中间等分为212份,每一份为1度记作℉。称为华氏温标.
3。热力学温标
选用水的三相点温度为273。16,定义水的三相点温度的1/273。16为1度,单位为k,这样就建立了热力学温标.只要确定一个基准点,则整个温标就确定了.
4。国际温标ITS—90
指导思想: 应尽量与热力学温标接近,温度的复现性要好。
内容
(1)定义了固定点,共有17个.
(2)规定不同区域内的基准仪器。
(3)建立基准仪器示值与国际温标之间的插补公式。
国际实用温标指出,热力学温度为基本物理量,规定水的三相点温度为273。16,单位为k,1k的大小为水的三相点热力学温度的1/273.16,由于摄氏温标将冰点定义为0℃,而冰点比水的三相点低0。01k,那么冰点温度为273.15k,即单位℃.
二、温度仪表分类与选择
测温方法分类:
1.接触法测温:敏感元件直接与被测对象接触,通过传导或对流达到热平衡,反映被测对象的温度。
优点:直观、可靠。
缺点:①存在负载效应,
②受到测量条件的限制,不能充分接触,使检测元件温度与被测对象温度不一致.
③热量传递需要一定时间造成测温滞后现象。(动态误差)
2.非接触法测温:检测部分与被测对象不直接接触,所以不破坏原有温度场。通常用来测量1000℃以上的移动、旋转、或反映迅速的高温物体。
3—2 膨胀式温度计
一。玻璃管液体温度计
(一)工作原理
利用玻璃管内液体的体积随温度的升高而膨胀的原理。
组成:液体存储器、毛细管、标尺、安全泡四部分。
液体可为:水银、酒精、甲苯等。
当温度超过300℃时,应采用硅硼玻璃,500℃以上要
采用石英玻璃。
(二)结构与类型
u 棒式玻璃温度计
u 内标式玻璃温度计
u 电接点式温度计
(三).误差分析
(1)玻璃材料有较大的热滞后效应。
(2)温度计插入深度不够将引起误差,
(3)非线性误差
(4)工作液的迟滞性
(5)读数误差
(四). 玻璃管液体温度计使用注意事项
温度计与被测介质应接触足够长的时间,以使温度计与被测介质达到热平衡。
读数时,视线应与标尽垂直,并与液柱于同一水平面上,手持温度计顶端的小耳环,不可触摸标尺。
二。固体膨胀式温度计
(一)类型及工作原理
利用固体受热膨胀原理制成的温度计
1。 杆式温度计
利用固体(一般采用膨胀系数较大的金属)
材料构成
2 双金属温度计
它的感温元件是由膨胀系数不同的两种金属
片牢固地结合在一起制成.
三。压力式温度计
(一)工作原理与结构形式
1 原理
压力式温度计是利用密封系统中测温物质的压力
随温度变化来测温;
2 分类
按所充物质相态分充气式、冲液式、蒸发式
按功能分:指示式、记录式、报警式和温度调节式等
3 组成
温包、毛细管、感压元件(弹簧管、波纹管等)
(二)使用方法与特点
对毛细管采取保护措施,防止损坏;注意安装方式与位置对精度的影响。
特点:结构简单,价格便宜,刻度清晰,防爆。精度差,示值滞后时间长,毛细管易损坏.
3-3 热电偶温度计
一.热电偶的工作原理
1.热电效应:将两种不同材料的导体或半导体组成一个闭和回路,如果两端点的温度不同,则回路中将产生一定大小的电流,这个电流的大小同材料的性质以及节点温度有关,上述现象称为热电效应。这个现象是1821年Seebeck发现的故又称为塞贝克效应。
2.接触电势:当两种不同的导体接触时,由于两者有不同的电子密度而产生的电势。
3.温差电势(汤姆逊温差电势)
4.输出表达式
第 3 次课的教学整体安排
授课时间
第 3 周周 2 第 5、6、7节
课时安排
3
授课题目(教学章、节或主题):
第三节:热电偶
第四节:热电阻
教学目的、要求(分掌握、理解、了解三个层次):
目的:掌握热电偶、热电阻的温度测量方法。
要求:理解热电偶的测温原理,掌握热电效应、热电偶的输出电势、热电偶的三个基本定律.了解热电偶的种类及结构形式。理解热电偶为什么要进行冷端温度补偿,掌握热电偶的补偿方法、热电阻的分类及测量电路,了解热电偶的误差因素及校验.
教学内容(包括基本内容、重点、难点):
热电偶和热电阻是温度测量的常用测温敏感元件,因此热电偶和热电阻是本章的重点也是本门课程的重点。
基本内容:热电偶是温度测量的重点,也是难点。基本内容为:热电效应、温差电势、接触电势、热电偶的输出表达式、热电偶的三个基本定律、热电偶的种类及结构形式。热电偶的冷端温度补偿、热电偶的误差因素及校验、热电阻的分类及测量电路。
重点:热电偶的三个基本定律、热电偶的冷端温度补偿、热电阻的测量电路
难点:当热电偶的冷端温度不为0时,如何根据热电偶分度表计算被测对象的实际温度.
讨论与思考:
1。 2。 热电偶与补偿导线连接,热电偶与铜导线连接都
需要两个接点的温度相同吗?为什么?
2.热电偶的冷端温度为什么需要进行冷端温度补偿?
3.热电阻和热敏电阻的温度电阻特性一致吗?
4.为什么热电阻测量电路中,两线制的测量电路误差较大?
课后作业:
1. 现有分度号为S的热电偶,已知热电偶的输出电势为7。454mv,冷端温度为30℃,问被测的实际温度为多少?
2。 已知K分度号热电势为:。试求。
3.叙述热电偶的三个基本定律,采用热电偶进行温度测量为什么要进行冷端温度补偿?都有哪些补偿方法?
4. 现有分度号为S的热电偶和动圈仪表组成测温系统,已知仪表所处环境温度为25℃,仪表指针指示为852℃,仪表的机械零点为0℃,问被测的实际温度为多少?
5. 热电阻的测量根据引线分有哪几种类型?分别画出其测量原理图并比较其测量特点。
教学过程设计:讲授115分钟,提问与讨论20分钟
授课类型: 理论课
教学方式: 讲授 讨论
教学资源: 多媒体
第三章 温度测量
3-3 热电偶温度计
二、热电偶的基本定律
利用热电偶来检测温度,必须引入变换器和显示器。
(一)热电偶均质导体定律
由同一均质导体(电子密度处处相等)组成的闭合回路中,不论导体的截面、长度以及温度分布如何,均不产生热电势。
l 由均质定律知:如果热电偶的两电极是由两种均质导体组成,那么热电偶的热电势仅与两接点的温度有关,与热电极的中间温度分布无关
l 检验热电偶丝的均匀性
(二)中间导体定律
在热电偶回路中接入第三导体,只要与第三种导体
相连接的两端温度相同,接入第三种导体后,对热电
偶回路中的总热电势没有影响。
证明:
(三)热电偶的中间温度定律
热电偶在两接点温度为T、T0时热电势等于该热电偶在两接点温度分别为T、TN时TN、T0时相应热电势的代数和。
结论:
(1)已知热电偶在某一冷端温度下进行分度,只要引入适当的修正就可在另一冷端温度下使用。
热电偶分度表中冷端温度为0℃,在实际测量中若热电偶的冷端温度为20℃,则可应用中间温度定律进行计算.
(2)补偿导线
如果在T0~T0 ’范围内,某对廉价导线的热电性能与贵金属热电偶相同,则可以用这对导线代替从T0'点到T0点一段的热电偶线,而不影响热电偶的热电势值,同时降低热电偶测量成本。
性能在一定温度范围和误差范围内与热电偶的热电性能相同
作用使热电偶冷端远离热源
注意:
u 两个接点温度不能超过规定温度
u 两个接点温度应当相同。否则,由于热电偶与补偿导线的热电特性并不完全相同,可能会引起较大的测量误差.
u 正负极不能接反
三、热电偶的种类及结构形式
(一)种类:国际电工委员会(ICE)对热电偶公认性能比较好的材料制定了统一的标准,ICE推荐的标准化热电偶7种。
(二)热电偶的结构类型
1。普通工业热电偶
结构:热电极,绝缘套管,接线盒,保护套管
2.铠装热电偶
结构:热电极,绝缘材料,保护套管
特点:测量端热容量小,动态响应快,
机械强度高,挠性好,耐高压,耐振
动,寿命长,适用各种工业测量。
3。小惯性热电偶
特点:响应快,时间常数小,可作温度变化的动态测量。
四、热电偶冷端温度的补偿方法
1。冰点法
精度高,多用于实验室
2.计算补偿法:利用热电偶的中间温度定律
例用镍铬—镍硅热电偶测温,冷端Tn=25℃,EAB(T,Tn)=40。347mV,求被测对象的实际温度。
l 由分度表知:EAB(25 ℃,0 ℃)=1mV
EAB(T,0 ℃)=40。347+1。00mV=41。347mV
由分度表知,T=1002 ℃
3。校正仪表机械零点法
当热电偶与动圈仪表配套使用时,如果冷端相对恒定,测量精度要求不高,可将仪表的机械零点调到热电偶冷端温度Tn,这就相当于在输入电势之前,就有一个补偿电势EAB(Tn,0 ℃)输入。
3。补偿电桥法
利用电桥不平衡原理,桥臂热电阻随温度变化,
产生补偿电压V
v R1=R2=R3=1Ω与温度无关
v 热电阻20℃,RCU= 1Ω,Vab=0;
环境不等于20 ℃,电桥失去平衡,产
生电势Vab与E(Tn,T0)相等,叠加补偿
v 电桥又叫毫伏发生器
v 使用时,注意零点是20 ℃
五、热电偶误差及校验
(一)热电偶测量误差
1.热电偶分度误差
2。补偿导线与热电偶的热电特性不完全相同带来的误差
3。冷端温度变化引起的误差
4.热电极变质产生的误差
5。绝缘不良引起的误差
6。二次仪表的基本误差
(二)热电偶的校验
热电偶出厂使用一段时间后,或热电偶重新焊制后,应进行校验
高于300℃热电偶的校验原理与方法:采用管式电炉
3—4电阻温度计
一、热电阻测温原理
对于一个给定电阻,其电阻值是温度的单值函数,因而可以通过测量电阻值来推算温度。
两个基本概念
电阻温度系数:在某一温度间隔内,温度变化1℃时的电阻相对变化量,单位为1/ ℃。
v 金属导体电阻温度系数一般为正值,纯金属一般为0.38~0。68%,金属纯度越高,其电阻温度系数越大
v 半导体材料的电阻温度系数一般为负值
电阻比:W(100)=
金属导体纯度越高,电阻比越大.
二、热电阻的类型
u 金属热电阻
铂热电阻
铜热电阻
镍热电阻
u 半导体热敏电阻
1。铂热电阻
特点:准确度高,稳定性好、性能可靠、有较高电阻率,广泛应用于基准、标准化仪器中,是目前测温复现性最好的一种。
使用范围:—200~850℃,在90年国际温标中规定平衡氢三相点13。8k到银凝固点961。78℃标准仪器应用铂电阻。
电阻纯度:W(100)= 1。3850
规格型号:Pt100、Pt10、Pt1000.
结构:电阻丝、绝缘管、保护套管、接线盒
2 铜热电阻
特点:线性度高、电阻温度系数高、价格便宜、
电阻率低、易氧化。
使用范围:-50~180℃。
3、半导体热敏电阻
随着温度的增高阻值降低,具有负的温度系数,
测温范围—40~350℃.
电阻值随温度按指数曲线变化,
与金属热电阻比较:
①电阻温度系数大,热敏电阻的电阻温度系数约为—(3~6)%,金属热电阻约为0。4~0。6%。
②电阻率大,可将电阻作的很大而体积很小,电阻阻值大,连接导线所用的电阻可忽略不计.
③结构简单,体积小,可用于测量点温度
④热惯性小
⑤工艺和互换性差.
4、热电阻的分类
(1)普通型热电阻
(2)铠装热电阻
(3) 薄膜铂热电阻
(4)厚膜铂热电阻
三、热电阻测温电路
分类:平衡电桥不平衡电桥
二线制、三线制、四线制
1 平衡电桥
平衡电桥二线法
§ 电源电压和稳定性一般不影响测量结果
§ 如果不计RW随温度的变化,Rt与RH 触点
位置成线性关系
§ 连接导线的电阻随温度变化引起测量误差
平衡电桥三线法
§ 电源电压和稳定性一般不影响测量结果
§ 连接导线的电阻随温度变化引起测量误差被削弱
2. 不平衡电桥法
二线制
§ 连续自动显示,结构简单,价格便宜
§ Rt与I成非线性关系
§ 电源电压的稳定性对测量结果有影响,
应该使用稳压电源
§ 连接导线电阻随温度变化会引起测量误差,
三线接法可以削弱
三线制
§ 连续自动显示,结构简单,价格便宜
§ Rt与I成非线性关系
§ 电源电压的稳定性对测量结果有影响,应该使用稳压电源
§ 三线制可抵消引线电阻对测量的影响
数字表法(四线接法)
v 高精度恒流源
v 电压表回路中无电流,热电阻两端电压不受影响
v 自热→电流很小
电流不大于6mA,高精度电流源不大于1mA,热敏电阻不大于100mA。
四、三种测温方法的比较
三种测温方法适用场合
铜—康铜(T型)热电偶一般精度,要求动态特性较好或者要求对原温度场影响较小的场合。可以自动记录测量结果.测头布置方便。多用于实验室测量。
铂热电阻稳态或者温度变化速度不大,要求高精度测量的场合。可自动记录测量结果。
热敏电阻稳态或者温度变化速度不大,要求精度不高。多用于工业测量。
玻璃液体温度计稳态,测量精度不高。不能自动记录测量结果,因而不能用于测量频度过快的场合。测头布置受到限制。
3-5 温度计的选择与安装
一、温度计的选择
满足精度要求>价钱适中>记录方便、操作简单
二、温度传感器的安装
1。测点的布置,避免死区
2。有良好的换热条件
3。减少传感器与周围物体的散热
4.便于维修
第 4 次课的教学整体安排
授课时间
第 4 周周 2 第 5、6、7 节
课时安排
3
授课题目(教学章、节或主题):
第四章:湿度测量
教学目的、要求(分掌握、理解、了解三个层次):
目的:掌握湿度测量的原理、方法及传感器
要求:理解湿度的表示方法;掌握干湿球法、露点法、吸湿法中氯化锂湿度传感器。
教学内容(包括基本内容、重点、难点):
基本内容:主要讲授湿度测量基本概念,干湿球湿度计、露点湿度计、氯化锂湿度计。对于空调系统,除了温度这个重要参数外,湿度也是一个非常重要的参数,它影响人体的舒适度,通常以相对湿度表示。基本的测量方法是干湿球法、露点法、吸湿法.
重点:相对湿度的数学表达式、测量原理,露点湿度计、氯化锂湿度计.
难点:干湿球法、露点法、吸湿法的测量原理.
讨论与思考:
1. 对于露点法,为什么测量干球温度和露点温度可以得到被测空气的相对湿度?
2. 为什么被测空气露点温度下的饱和蒸汽压力就是被测空气的水蒸气分压力?
课后作业:
1.对LiCl电阻湿度测头通常采用桥路进行测量,桥路的供电电源通常采用什么电源?为什么?
2.采用普通干湿球温度计进行相对湿度测量,为了提高测试精度通常需要注意什么?
教学过程设计:讲授120分钟,提问与讨论15分钟
授课类型: 理论课
教学方式: 讲授 讨论
教学资源: 多媒体
第四章 湿度测量
第一节湿度测量概述
一.湿度的表示方法
1.绝对湿度:每m3湿空气在标况下(0℃,1大气压)所含湿空气的重量,即水蒸气密度.单位为g/m3。
由气体状态方程:
所以测得被测空气的水蒸气分压力,及干球温度即可求得绝对湿度.
2相对湿度空气中水蒸气分压力Pn与同温度下饱和水蒸气分压力Pb的比值
Pb。s—相应于湿球温度的饱和水蒸气压力;
Pb-干球温度对应的饱和水蒸气压力;
B—大气压力;
A—与风速有关的系数。
3. 含湿量
空气由干空气和湿空气组成,每kg干空气所含水蒸气的量,称为含湿量.符号d,单位g/kg
所以,当大气压力为定值,含湿量是水蒸气分压力的函数。
二.气体湿度测量方法
1.干湿球法
简单干湿球湿度计,通风干湿球湿度计(阿斯曼)
2.露点法
光电式露点湿度计
3.吸湿法
氯化锂电阻式,加热式氯化锂法
高分子电阻式,高分子电容式
金属氧化物陶瓷电阻式,金属氧化物膜电阻式
第二节干湿球与露点法湿度检测
一.干湿球法湿度测量
• 测得干球温度和湿球温度可计算相对湿度.
• 适用范围:大于0℃,测量误差1~2%。
1.普通干湿球温度计
(1)构造同精度温度计两支、脱脂纱布、蒸馏水
(2)特点无风速控制,无屏蔽辐射
水易污染
测量误差较大
注意:
①湿球温度计安装时,要求温度计的球部离开水杯上沿至少2~3cm,
②应使湿球温度计周围空气流速保持在2。5m/s以上,使A为常数。
2.通风干湿球温度计(阿斯曼)
*构造
温度计置于金属套管内
微型风机,
特点
— 湿球附近风速固定在2。5m/s
— 金属套管屏蔽辐射
— 蒸馏水随时滴入
3.电动干湿球温度计
将湿信号转换成电信号,有利于远传.
构造:轴流风机、镍电阻、湿球纱布、盛水杯、测量桥路.
测量桥路:两个桥路通过电阻R连接,构成双电桥。
通过调节可调电阻R的滑动触头,使检流计为0,可得UDE=UAB。
• 根据这一关系计算出RDE和相对湿度的关系,在可调电阻上进行分度,实现相对湿度的测量。
二.露点法湿度测量
露点温度:将被测空气冷却,当湿空气冷却到水蒸气达到饱和并开始凝结出水分时所对应的温度。
先测定露点温度tL,根据tL确定该温度下饱和水蒸气压力PL。PL即为被测空气的水蒸气分压力Pn。
1.露点湿度计
采用两只玻璃棒温度计,一只测量干球温度,
另一只放入黄铜盒内测量露点温度。根据测
得的露点温度和干球温度通过查表得到对应
的露点温度下的饱和蒸气压力和干球温度下
的饱和蒸气压力。
缺点:露点温度不易测准。
2.光电式露点湿度计
u 影响测量精度的因素:
高度光洁的露点镜;
高精度的光学与热电制冷调节系统;
采样气体需洁净。
第三节氯化锂电阻湿度计
*属于吸湿法测量,
*根据氯化锂的吸湿特性和氯化锂吸湿后电阻变化特性。
一.传感器
形式:梳状、柱状。
注意:
1.为了避免氯化锂溶液发生电解,电极两端
应接交流电。
2。量程窄,一般为15%~20%,例如,0。05%
的浓度对应感湿范围为80%—100%,0.2%的
浓度对应的感湿范围为60%—80%。
3。环境温度对输出影响较大,因此要进行温
度补偿.
4. 最高使用温度55℃,当大于55℃,氯化
锂溶液容易蒸发。
扩大氯化锂湿度计的测量范围
]
二.变送器
将氯化锂湿度测头接入交流电桥,此电桥将传感器的电阻信号转变为交流电压信号.此电压经放大、检波整流变成与相对湿度成一定函数关系的直流电压,再经电压-电流转换器转换成标准0—10mA的电流信号.
第四节高分子湿度传感器
一.高分子电容式湿度传感器
特点:迅速吸湿、脱湿,滞后小,响应快,不受气流速度影响,测量范围宽,抗污染能力强,稳定性好.
根据电容公式可知,在电容两个极板的面积和间距不变的情况下,当介电常数发生变化时将引起电容值的变化.
二.高分子电阻式湿度传感器
使用高分子固体电解质材料制作感湿膜,当相对湿度大时,膜中的可移动离子浓度增大,电阻减少,当相对湿度降低时,膜中的可运动离子浓度减少,电阻阻值增大.这样可通过电极间的电阻值的变化测量相对湿度.
第五节金属氧化物湿度传感器
一.金属氧化物陶瓷湿度传感器
由金属氧化物多孔性陶瓷烧结而成。烧结体上有微孔,可使湿敏层吸附或释放水分子,造成其电阻值的改变。
二.金属氧化物膜湿度传感器
原理:将调制好的金属氧化物的糊状物加工在陶瓷基片及电极上,采用烧结或烘干的方法使之固化成膜.这种膜的含湿量随着外界空气的含湿量的变化而变化,含湿量的变化又引起电阻阻值的变化,通过测量电阻之间的阻值即可测量相对湿度.
特点:传感器电阻的对数值与湿度成线性关系,测湿范围、工作温度范围宽.
第七节饱和盐溶液湿度校正装置
关键:①实现不同范围内维持恒定的相对湿度空间,
②可作基准的高精度标定仪器,
• 水的饱和蒸气压是温度的函数,温度愈高,饱和蒸气压也愈高.
• 当向水中加入盐类,溶液中的水分蒸发受到限制,使其饱和蒸气压降低,降低的程度与盐类的种类有关。
• 根据不同的盐类对应的饱和蒸气压不同,即对应的相对湿度不同实现湿度传感器的标定。
第 5 次课的教学整体安排
授课时间
第 5 周周 2 第 5、6、7 节
课时安排
3
授课题目(教学章、节或主题):
第五章:压力测量
教学目的、要求(分掌握、理解、了解三个层次):
目的:掌握常规的压力仪表的原理、方法及使应用
要求:理解压力测量的基本原理、掌握常规的压力仪表的原理、方法及使应用,了解压力仪表的校验.
教学内容(包括基本内容、重点、难点):
基本内容:
压力测量:压力测量的基本概念、液注式压力计、弹性元件、弹簧管压力计、电接点弹簧管压力计、霍尔式压力计、扩散硅压力压差变送器、电容式压力压差变送器、压电式压力传感器;压力表的选择、安装、与校验.
重点:压力的表示方法, 液注式压力计、弹簧管压力计、霍尔式压力计、扩散硅压力压差变送器、压力表的选择、安装。
难点:弹簧管压力计的弹性变形、扩散硅压力传感器的测量电路
讨论与思考:
1. 斜管式微压计用水作介质,可以吗?
2. 液柱式压力计,水作工作介质,为了便于读数,在水中加入红墨水,可以吗?
3. 斜管式微压计,调零时,总调不到,可能的原因是什么?
4. 斜管式微压计,测量时看不到液柱,是怎么回事?
5. 弹簧管是怎样产生形变的呢?
6. 霍尔式压力计是如何将弹簧管的弹性变形转变成霍尔电势的?
课后作业:
1. 为什么斜管式微压计的测试精度比U型管压力计的高?
2. 压力计分为哪几大类?
3.弹簧管的横断面可以是圆形断面么?为什么?
4 有一压力容器,压力范围0.8~1。0MPa,压力变化速度较缓,不要求远传。试选择压力仪表(给出量程和精度等级)测量该压力,测量误差不大于被测压力的3%。
教学过程设计:讲授115分钟,提问与讨论20分钟
授课类型: 理论课
教学方式: 讲授 讨论
教学资源: 多媒体
填写说明:1.每项页面大小可自行添减;
2。教学内容与讨论、思考题、作业部分可合二为一。
第五章 压力测量
本章主要讲授液柱式压力计、弹性性压力计、电气式压力压差变送器及压力表的选择与校验。压力仪表的应用非常广泛,一方面一般的热工系统都涉及压力或压差测量;另一方面压力或压差的测量还可以实现其他参数的测量.如毕托管测流速、孔板流量计、差压液位计等.
第一节概述
一、压力的基本概念
压力垂直作用于物体表面上的力
压强垂直作用于单位面积物体表面上的力
在建筑环境与设备的测试中,并不严格区分压力和
压强.通常所说的压力实际上是指压强。
压差测量两个压力之差称压差
表压力压力仪表指示的压力值
缺省情况下,所说的压力值即指表压力表压力可正可负,为负时其绝对值称为真空度。
单位:
*帕(Pa) N/m2,国际单位
*兆帕(MPa) 106Pa
*工程大气压, kgf/cm2,98070 Pa
约等于一个大气压(1。013e+5 Pa) ,“自来水压头是5公斤”,用的就是这个单位.
*mmH2O, 9。81 Pa
*mmHg ,133 Pa
二.压力测量仪表的分类
1.液柱式压力计
2.弹性式压力计
3.电气式压力计
4.活塞式压力计
第二节液柱式压力计
分类
U型管压力计
单管压力计
斜管式微压计
特点:结构简单,使用方便,准确度比较高,常用于测量低压、
负压、差压.
缺点:体积大,读数不方便,玻璃管易损坏。
一.U型管压力计
假设被测的介质为气体,可忽略被测介质的高度形成的静压值。
根据流体静力学原理可得:
U型管内径一般为5-20mm,为了减少毛细现象管子内径一般不
少于10mm,
二.单管式压力计
因为A1、A2为常数,这样可通过一次读数进行压差测量。当A2/A1很小时,h1可忽略,公式简化为:
三、斜管式压力计
主要用于测量微小的压力、负压和压差.为了减少读数的相对误差,拉长液柱,将测量管倾斜放置。
问题?
1。斜管式微压计用水作介质,可以吗?
2。液柱式压力计,水作工作介质,为了便于读数,在水中加入红墨水,可以吗?
3。斜管式微压计,调零时,总调不到,可能的原因是什么?
4.斜管式微压计,测量时看不到液柱,是怎么回事?
四.液柱式压力计的测量误差及其修正
1.环境温度变化的影响及修正
对于一般的工业测量,主要考虑工作液密度变化对压力测量的影响。修正公式为:
2. 重力加速度变化的影响及修正
3.毛细现象的影响
为了减少该误差,要求测量管的内径一般不小于10mm
第三节弹性式压力计
一、 概述
原理:弹性压力表是利用各种不同形状弹性感压元件在被测压力的作用下,产生弹性变形制成的测压仪表
特点:结构简单、牢固可靠、测压范围广、使用方便、造价低廉、有足够的精度,可远传
常用弹性压力表:弹簧管式、膜片(盒)式、波纹管式
二.弹性元件及其特性
1.膜片:使用时周边夹紧,测低压、微压。将两块膜片沿周边对焊起来,形成一膜盒,膜盒式微压计通常用于测量炉膛和烟道尾部负压。精度等级为2。5,最高可达1。5级.
2.波纹管:开口端固定,封闭端的位移作为输出,
由于波纹管的位移相对较大,故灵敏度高,常用于
测量较低的压力(1。0-106Pa)精度等级1。5级。
3. 弹簧管:
问题:弹簧管是怎样产生形变的呢?
假设被测压力大于外界大气压力,产生短轴变长,长轴变短的弹性形变,使管子在弯曲方向上的刚度增大,自由端向管子伸直的方向运动。对应的几何分析如下:
弹簧管在量程范围内自由端的位移一般为7—8o,弹簧管作成多圈时,自由端的位移可达45o。弹簧管的自由端的位移可通过杠杆机构带动指针转动,这种机构的指针最大转角为180o,通常作成90度的回转角.最常用的传动机构为杠杆—扇形齿轮机构,可使指针转动270o.
电接点压力表:不仅可实现压力的测量,而且可实现压力的报警和控制。
第四节电气式压力检测
一.
展开阅读全文