收藏 分销(赏)

基于TMS320F2812-DSP的SPWM波产生.doc

上传人:天**** 文档编号:3871623 上传时间:2024-07-23 格式:DOC 页数:6 大小:29.04KB
下载 相关 举报
基于TMS320F2812-DSP的SPWM波产生.doc_第1页
第1页 / 共6页
基于TMS320F2812-DSP的SPWM波产生.doc_第2页
第2页 / 共6页
基于TMS320F2812-DSP的SPWM波产生.doc_第3页
第3页 / 共6页
基于TMS320F2812-DSP的SPWM波产生.doc_第4页
第4页 / 共6页
基于TMS320F2812-DSP的SPWM波产生.doc_第5页
第5页 / 共6页
点击查看更多>>
资源描述

1、基于TMS320F2812的三相SPWM波的实现一、PWM的简介与发展脉宽调制(PWM:(Pulse Width Modulation)是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。简而言之,PWM是一种对模拟信号电平进行数字编码的方法.通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码.PWM信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF).电压或电流源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的。通的时候即是直流供电被加

2、到负载上的时候,断的时候即是供电被断开的时候.只要带宽足够,任何模拟值都可以使用PWM进行编码。PWM的一个优点是从处理器到被控系统信号都是数字形式的,无需进行数模转换.让信号保持为数字形式可将噪声影响降到最小。噪声只有在强到足以将逻辑1改变为逻辑0或将逻辑0改变为逻辑1时,也才能对数字信号产生影响。 对噪声抵抗能力的增强是PWM相对于模拟控制的另外一个优点,而且这也是在某些时候将PWM用于通信的主要原因。从模拟信号转向PWM可以极大地延长通信距离.在接收端,通过适当的RC或LC网络可以滤除调制高频方波并将信号还原为模拟形式.PWM控制技术一直是变频技术的核心技术之一。1964年A.Schon

3、ung和H。stemmler首先提出把这项通讯技术应用到交流传动中,从此为交流传动的推广应用开辟了新的局面.从最初采用模拟电路完成三角调制波和参考正弦波比较,产生正弦脉宽调制SPWM信号以控制功率器件的开关开始,到目前采用全数字化方案,完成优化的实时在线的PWM信号输出,可以说直到目前为止,PWM在各种应用场合仍在主导地位,并一直是人们研究的热点.由于PWM可以同时实现变频变压反抑制谐波的特点。由此在交流传动及至其它能量变换系统中得到广泛应用。PWM控制技术大致可以为为三类,正弦PWM(包括电压,电流或磁通的正弦为目标的各种PWM方案,多重PWM也应归于此类),优化PWM及随机PWM。正弦PW

4、M已为人们所熟知,而旨在改善输出电压、电流波形,降低电源系统谐波的多重PWM技术在大功率变频器中有其独特的优势(如ABB ACS1000系列和美国ROBICON公司的完美无谐波系列等);而优化PWM所追求的则是实现电流谐波畸变率(THD)最小,电压利用率最高,效率最优,及转矩脉动最小以及其它特定优化目标。在70年代开始至80年代初,由于当时大功率晶体管主要为双极性达林顿三极管,载波频率一般最高不超过5kHz,电机绕组的电磁噪音及谐波引起的振动引起人们的关注.为求得改善,随机PWM方法应运而生。其原理是随机改变开关频率使电机电磁噪音近似为限带白噪音(在线性频率坐标系中,各频率能量分布是均匀的),

5、尽管噪音的总分贝数未变,但以固定开关频率为特征的有色噪音强度大大削弱。正因为如此,即使在IGBT已被广泛应用的今天,对于载波频率必须限制在较低频率的场合,随机PWM仍然有其特殊的价值(DTC控制即为一例);别一方面则告诉人们消除机械和电磁噪音的最佳方法不是盲目地提高工作频率,因为随机PWM技术提供了一个分析、解决问题的全新思路。二、几种PWM控制方法采样控制理论中有一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。PWM控制技术就是以该结论为理论基础,对半导体开关器件的导通和关断进行控制,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所

6、需要的波形.按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率.PWM控制的基本原理很早就已经提出,但是受电力电子器件发展水平的制约,在上世纪80年代以前一直未能实现。直到进入上世纪80年代,随着全控型电力电子器件的出现和迅速发展,PWM控制技术才真正得到应用。随着电力电子技术,微电子技术和自动控制技术的发展以及各种新的理论方法,如现代控制理论,非线性系统控制思想的应用,PWM控制技术获得了空前的发展.到目前为止,已出现了多种PWM控制技术,根据PWM控制技术的特点,到目前为止主要有以下8类方法. 2。1 等脉宽PWM法VVVF(Variable Voltag

7、e Variable Frequency)装置在早期是采用PAM(Pulse Amplitude Modulation)控制技术来实现的,其逆变器部分只能输出频率可调的方波电压而不能调压。等脉宽PWM法正是为了克服PAM法的这个缺点发展而来的,是PWM法中最为简单的一种.它是把每一脉冲的宽度均相等的脉冲列作为PWM波,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。相对于PAM法,该方法的优点是简化了电路结构,提高了输入端的功率因数,但同时也存在输出电压中除基波外,还包含较大的谐波分量。 2。2 随机PWM 在上世纪70年代开始至上世纪8

8、0年代初,由于当时大功率晶体管主要为双极性达林顿三极管,载波频率一般不超过5kHz,电机绕组的电磁噪音及谐波造成的振动引起了人们的关注。为求得改善,随机PWM方法应运而生.其原理是随机改变开关频率使电机电磁噪音近似为限带白噪声(在线性频率坐标系中,各频率能量分布是均匀的),尽管噪音的总分贝数未变,但以固定开关频率为特征的有色噪音强度大大削弱.正因为如此,即使在IGBT已被广泛应用的今天,对于载波频率必须限制在较低频率的场合,随机PWM仍然有其特殊的价值;另一方面则说明了消除机械和电磁噪音的最佳方法不是盲目地提高工作频率,随机PWM技术正是提供了一个分析,解决这种问题的全新思路。 2。3 SPW

9、M法 SPWM(Sinusoidal PWM)法是一种比较成熟的,目前使用较广泛的PWM法。前面提到的采样控制理论中的一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同.SPWM法就是以该结论为理论基础,用脉冲宽度按正弦规律变化而和正弦波等效的PWM波形即SPWM波形控制逆变电路中开关器件的通断,使其输出的脉冲电压的面积与所希望输出的正弦波在相应区间内的面积相等,通过改变调制波的频率和幅值则可调节逆变电路输出电压的频率和幅值。该方法的实现有以下几种方案。 2.3。1 等面积法 该方案实际上就是SPWM法原理的直接阐释,用同样数量的等幅而不等宽的矩形脉冲序列代替正弦波

10、,然后计算各脉冲的宽度和间隔,并把这些数据存于微机中,通过查表的方式生成PWM信号控制开关器件的通断,以达到预期的目的.由于此方法是以SPWM控制的基本原理为出发点,可以准确地计算出各开关器件的通断时刻,其所得的的波形很接近正弦波,但其存在计算繁琐,数据占用内存大,不能实时控制的缺点. 2。3。2 硬件调制法 硬件调制法是为解决等面积法计算繁琐的缺点而提出的,其原理就是把所希望的波形作为调制信号,把接受调制的信号作为载波,通过对载波的调制得到所期望的PWM波形。通常采用等腰三角波作为载波,当调制信号波为正弦波时,所得到的就是SPWM波形.其实现方法简单,可以用模拟电路构成三角波载波和正弦调制波

11、发生电路,用比较器来确定它们的交点,在交点时刻对开关器件的通断进行控制,就可以生成SPWM波.但是,这种模拟电路结构复杂,难以实现精确的控制。 2。3。3 软件生成法 由于微机技术的发展使得用软件生成SPWM波形变得比较容易,因此,软件生成法也就应运而生。软件生成法其实就是用软件来实现调制的方法,其有两种基本算法,即自然采样法和规则采样法。 2。3。3.1 自然采样法以正弦波为调制波,等腰三角波为载波进行比较,在两个波形的自然交点时刻控制开关器件的通断,这就是自然采样法。其优点是所得SPWM波形最接近正弦波,但由于三角波与正弦波交点有任意性,脉冲中心在一个周期内不等距,从而脉宽表达式是一个超越

12、方程,计算繁琐,难以实时控制。 2。3.3。2 规则采样法规则采样法是一种应用较广的工程实用方法,一般采用三角波作为载波。其原理就是用三角波对正弦波进行采样得到阶梯波,再以阶梯波与三角波的交点时刻控制开关器件的通断,从而实现SPWM法。当三角波只在其顶点(或底点)位置对正弦波进行采样时,由阶梯波与三角波的交点所确定的脉宽,在一个载波周期(即采样周期)内的位置是对称的,这种方法称为对称规则采样。当三角波既在其顶点又在底点时刻对正弦波进行采样时,由阶梯波与三角波的交点所确定的脉宽,在一个载波周期(此时为采样周期的两倍)内的位置一般并不对称,这种方法称为非对称规则采样。 规则采样法是对自然采样法的改

13、进,其主要优点就是是计算简单,便于在线实时运算,其中非对称规则采样法因阶数多而更接近正弦。其缺点是直流电压利用率较低,线性控制范围较小。 以上两种方法均只适用于同步调制方式中。 2。3.4 低次谐波消去法低次谐波消去法是以消去PWM波形中某些主要的低次谐波为目的的方法。其原理是对输出电压波形按傅氏级数展开,表示为u(t)=ansinnt,首先确定基波分量a1的值,再令两个不同的an=0,就可以建立三个方程,联立求解得a1,a2及a3,这样就可以消去两个频率的谐波。 该方法虽然可以很好地消除所指定的低次谐波,但是,剩余未消去的较低次谐波的幅值可能会相当大,而且同样存在计算复杂的缺点。该方法同样只

14、适用于同步调制方式中。 2.4 梯形波与三角波比较法前面所介绍的各种方法主要是以输出波形尽量接近正弦波为目的,从而忽视了直流电压的利用率,如SPWM法,其直流电压利用率仅为86。6%.因此,为了提高直流电压利用率,提出了一种新的方法梯形波与三角波比较法.该方法是采用梯形波作为调制信号,三角波为载波,且使两波幅值相等,以两波的交点时刻控制开关器件的通断实现PWM控制。 由于当梯形波幅值和三角波幅值相等时,其所含的基波分量幅值已超过了三角波幅值,从而可以有效地提高直流电压利用率。但由于梯形波本身含有低次谐波,所以输出波形中含有5次,7次等低次谐波. 2。5 线电压控制PWM 前面所介绍的各种PWM

15、控制方法用于三相逆变电路时,都是对三相输出相电压分别进行控制的,使其输出接近正弦波,但是,对于像三相异步电动机这样的三相无中线对称负载,逆变器输出不必追求相电压接近正弦,而可着眼于使线电压趋于正弦.因此,提出了线电压控制PWM,主要有以下两种方法。 2。5。1 马鞍形波与三角波比较法 马鞍形波与三角波比较法也就是谐波注入PWM方式(HIPWM),其原理是在正弦波中加入一定比例的三次谐波,调制信号便呈现出马鞍形,而且幅值明显降低,于是在调制信号的幅值不超过载波幅值的情况下,可以使基波幅值超过三角波幅值,提高了直流电压利用率。在三相无中线系统中,由于三次谐波电流无通路,所以三个线电压和线电流中均不

16、含三次谐波4。 除了可以注入三次谐波以外,还可以注入其他3倍频于正弦波信号的其他波形,这些信号都不会影响线 电压。这是因为,经过PWM调制后逆变电路输出的相电压也必然包含相应的3倍频于正弦波信号的谐波,但在合成线电压时,各相电压中的这些谐波将互相抵消,从而使线电压仍为正弦波。 2。6 单元脉宽调制法因为,三相对称线电压有Uuv+Uvw+Uwu=0的关系,所以,某一线电压任何时刻都等于另外两个线电压负值之和.现在把一个周期等分为6个区间,每区间60,对于某一线电压例如Uuv,半个周期两边60区间用Uuv本身表示,中间60区间用-(Uvw+Uwu)表示,当将Uvw和Uwu作同样处理时,就可以得到三

17、相线电压波形只有半周内两边60区间的两种波形形状,并且有正有负.把这样的电压波形作为脉宽调制的参考信号,载波仍用三角波,并把各区间的曲线用直线近似(实践表明,这样做引起的误差不大,完全可行),就可以得到线电压的脉冲波形,该波形是完全对称,且规律性很强,负半周是正半周相应脉冲列的反相,因此,只要半个周期两边60区间的脉冲列一经确定,线电压的调制脉冲波形就唯一地确定了。这个脉冲并不是开关器件的驱动脉冲信号,但由于已知三相线电压的脉冲工作模式,就可以确定开关器件的驱动脉冲信号了。 三、SPWM基本原理本文以400 Hz三相逆变电源的研发为依托,介绍利用TMS320F2812生成电压SPWM的技术.产

18、生电压SPWM波的方法可分为硬件法和软件法两类,硬件法最实用的是采用专用集成电路,如SA4828,HEF4752,SLE4520等,软件法是使电路成本最低的方法,他通过实时计算来生成SPWM波,实时计算对控制器的运算速度要求非常高,高性能的DSP(数字信号处理器)无疑是能满足这一要求的性价比最理想的选择。产生SPWM波的原理是:用一组等腰三角波与一个正弦波进行比较,其相交的时刻(即交点)作为开关管“开或“关”的时刻,这组等腰三角形波称为载波,而正弦波称为调制波,如图1所示.正弦波的频率和幅值是可控制的,改变正弦波的频率,就可以改变电源输出电压的频率,改变正弦波的幅值,也就改变了正弦波与载波的交

19、点,使输出脉冲系列的宽度发生变化,从而改变电源输出电压的大小。四、 软件和硬件设计1、 TMS320F2812的事件管理器模块TMS320F2812是TI公司推出的高速数字信号处理芯片,器件上集成了多种先进的外设,为电机及其他运动控制领域应用的实现提供了良好的平台,控制生成SPWM主要利用的是片上的事件管理器模块(EVA和EVB),该模块具有以下主要功能:(1)5个独立的PWM输出,其中3个由比较单元产生,2个由通用定时器产生。另外还有3个由比较单元产生的PWM互补输出;(2)由比较单元产生的PWM死区可编程;(3)能够产生可编程的非对称、对称和空间矢量PWM波形;(4)比较寄存器和周期寄存器

20、可自动装载,减少CPU的开销。2、 SPWM波的生成2、1 总体思路本文利用的是EVA模块,当定时器T1处于连续递增递减计数模式时,计数寄存器(T1CNT)中的数值的变化轨迹就是等腰三角形,也就相当于产生了一系列的等腰三角形波,当比较寄存器(CMPRx,x=1,2,3)中的值与计数寄存器中的值相等时,对应的引脚(PWMx,x=1,2,3,4,5,6)上的电平就会发生跳变,从而输出一系列的等高的方波信号,如图2所示。至于输出的方波的宽度,就和比较寄存器中的值一一对应,因此,只要使比较寄存器中的值按正弦规律变化,就可以得到SPWM波形。2。2 算法分析通过实时计算生成电压SPWM需要数学模型,建立

21、数学模型的方法有多种,比如谐波消去法、等面积法、采样型SPWM法以及他们派生出来的各种方法。本文介绍的生成SPWM波采用的是不对称规则采样法,不对称规则采样法是用阶梯波去逼近正弦波,每个载波周期内采样两次,既在三角波的顶点对称轴位置采样,又在三角波的底点对称轴位置采样,由于这样采样所形成的阶梯波与三角波的交点不对称,故称其为不对称规则采样法,如图3所示。此法所形成的阶梯波与正弦波的逼近程度大大提高,所以谐波分量的幅值更小,在实际中得到了较多的应用。图3中所示,Us是三角载波峰值,Tc是三角载波周期,t1和t2分别是两次采样时刻,他们决定了SPWM波上的“开、“关”时间分别是ton1,toff1

22、和ton2,toff2。根据三角形相似关系式推导可得:式中M=UMUS,即正弦波峰值与三角波峰值之比,M称为调制度。N=fcf=1(Tcf),即三角波频率fc与正弦波频率f之比,N称为载波比.k为偶数时代表顶点采样,k为奇数时代表底点采样.以上是生成单相SPWM波的数学模型,要生成三相SPWM波,必须使用三条正弦波和同一条三角波求交点,三相正弦波依次相差120,所以在顶点采样时三相的脉宽分别是:2。3 程序流程图程序有主程序和定时器下溢中断子程序组成,主程序是一个无限循环结构,他的主要工作是系统的初始化,根据中断子程序中给出的比较寄存器的值生成SPWM波.流程图如图4所示.中断子程序的主要功能是计算比较寄存器的值,流程图如图5所示.2。4 程序编写本例程的载波频率为12 kHz,调制波频率为400 Hz,DSP时钟频率为150 MHz,载波周期Tc=1(1215010)=12 388个计数周期.中断子程序主要是计算功能,按图5所示的流程图一步步编写即可,程序不再列出。至于在计算中用到的正弦sin值,为了保证控制的实时性,最好把用到的sin值事先计算出来做成一个数组放在DSP的数据存储器中,存放位置及长度需在.cmd文件中进行设置。5

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 学术论文 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服