1、21.2.2积的算术平方根的性质精品文档21.2.2积的算术平方根的性质教 学案年级: 九 学科: 数学 主备人: 关雯清教学目标:1. 理解并掌握积的算术平方根的性质:=(0,0).2. 利用积的算术平方根的性质化简二次根式。教学重点:积的算术平方根的性质在二次根式化简中的应用。教学难点:将二次根号下的平方因子正确地移出根号。教学过程一、温故互查:二、设问导读:自主预习教材P6P7的内容,完成下列各题。1. 用式子表示积的算术平方根的性质:=_(0,0). 2.化简 =_, (0,0)=_.利用积的算术平方根的性质化简下列二次根式。 ; ; (0,0); (0). 议一议:化简二次根式的一般
2、步骤是什么?【归纳总结】 将被开方数分解,化成_的形式。 选出被开方数中的_. 利用积的算术平方根性质和二次根式的性质直接把根号下的每一个_去掉平方号以后移到根号外(注意:移到根号外的数必须是_).三、自学检测:1. 化简下列二次根式: (5) (6) (7) (8) 四、巩固练习:1、选择题(1)等式成立的条件是( ) Ax1 Bx-1 C-1x1 Dx1或x-1(2)下列各等式成立的是( )A42=8 B54=20 C43=7 D54=20(3)二次根式的计算结果是( ) A2 B-2 C6 D123、判断下列各式是否成立:(1) (2)(3) (4)4、化简(1);(2) ;(3) ;(4) ; 5、化简二次根式: (1)(2);(3);(4) (5) (6) (7) (8) (9)(10) (11) (12)(a0)(13)6、计算下列各式:(1) (2)化简 ()7、下列各式成立的条件是什么?(1) (2) ,(3) (4)(5)8、已知-a成立, 则a的范围为 五、拓展延伸:1.设0,0,化简下列二次根式: 2.当0时,化简二次根式.板书设计:课堂小结:(1)乘法法则:(2)积的算术平方根: 作业布置:1. 化简下列二次根式,其中 2、已知2x4 化简+的值课后反思:收集于网络,如有侵权请联系管理员删除