1、基础达标1假如x0,比较(1)2与(1)2的大小解:(1)2(1)2(1)(1)(1)(1)4.x0,0,40,(1)2(1)2.2设a,b是非负实数,求证a3b3(a2b2)证明:a3b3(a2b2)a2()b2()()()5()5当ab时,()5()5,()()5()50;当ab时,()50.a3b3(a2b2)3已知a,bR,且ab1,求证.证明:法一:a,bR,且ab1,ab,4(a2b2)4(ab)22ab4(12ab)412.法二:左边a2b244a2b24a2b2114(a2b2)22422224242.4已知abc且abc0,求证bc,且abc0,所以a0,c0,a0.欲证a,
2、只需证b2ac3a2,即证b2a(ab)0,即证(ab)(ac)0.由于abc,所以(ab)(ac)0成立,所以所证不等式成立力气提升1(1)设x1,y1,求证xyxy;(2)设1abc,求证logablogbclogcalogbalogcblogaC证明:(1)x1,y1,xyxyxy(xy)1yx(xy)2.下面利用作差法证明:yx(xy)2xy(xy)1(xy)21xy(xy)(xy)(xy1)(xy1)(xy)(xy1)(xy1)(xyxy1)(xy1)(x1)(y1)x1,y1,(xy1)(x1)(y1)0,从而所要证明的不等式成立(2)设logabx,logbcy,由对数的换底公式
3、得logca,logba,logcb,logacxy.于是,所要证明的不等式为xyxy.又1.证明:要证,只需证a(bm)(cm)b(am)(cm)c(am)(bm)0,即证abcabmacmam2abcabmbcmbm2abcacmbcmcm20,即证abc2abm(abc)m20.由于a,b,c分别是ABC的三边长,故有abCm0,(abc)m20,abc2abm(abc)m20是成立的,因此成立3已知函数f(x)tan x,x,若x1,x2,且x1x2,求证f(x1)f(x2)f.证明:要证f(x1)f(x2)f,即证(tan x1tan x2)tan,只需证,只需证.x1,x2,0x1x20,cos x10,cos x20,1cos(x1x2)0,只需证1cos x1cos x2sin x1sin x2,即证1cos(x1x2)x1x2,cos(x1x2)f成立4已知数列an的首项a1,an1,nN*.(1)求an的通项公式;(2)求证对任意的x0,an.解:(1)an1,1.又1,是以为首项,为公比的等比数列,1,an.(2)证明:由(1)知an,(an)2anan,原不等式成立