收藏 分销(赏)

2020年人教A版数学理(广东用)课时作业:第二章-第三节函数的奇偶性与周期性.docx

上传人:w****g 文档编号:3829381 上传时间:2024-07-22 格式:DOCX 页数:5 大小:59.52KB
下载 相关 举报
2020年人教A版数学理(广东用)课时作业:第二章-第三节函数的奇偶性与周期性.docx_第1页
第1页 / 共5页
2020年人教A版数学理(广东用)课时作业:第二章-第三节函数的奇偶性与周期性.docx_第2页
第2页 / 共5页
2020年人教A版数学理(广东用)课时作业:第二章-第三节函数的奇偶性与周期性.docx_第3页
第3页 / 共5页
2020年人教A版数学理(广东用)课时作业:第二章-第三节函数的奇偶性与周期性.docx_第4页
第4页 / 共5页
2020年人教A版数学理(广东用)课时作业:第二章-第三节函数的奇偶性与周期性.docx_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、温馨提示: 此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调整合适的观看比例,答案解析附后。关闭Word文档返回原板块。课时提升作业(六)一、选择题1.函数y=log2的图象()(A)关于原点对称(B)关于直线y=-x对称(C)关于y轴对称(D)关于直线y=x对称2.(2021江门模拟)已知函数f(x)=lg|x|,xR且x0,则f(x)是()(A)奇函数且在(0,+)上单调递增(B)偶函数且在(0,+)上单调递增(C)奇函数且在(0,+)上单调递减(D)偶函数且在(0,+)上单调递减3.设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是()(A)f(x)+|g(x)

2、|是偶函数(B)f(x)-|g(x)|是奇函数(C)|f(x)|+g(x)是偶函数(D)|f(x)|-g(x)是奇函数4.(2021韶关模拟)函数f(x)=x3+sinx+1(xR),若f(-a)=2,则f(a)的值为()(A)3(B)0(C)-1(D)-25.设f(x)为定义在R上的奇函数,当x0时,f(x)=2x+2x+b(b为常数),则f(-1)=()(A)-3(B)-1(C)1(D)36.对于函数f(x)=acosx+bx2+c,其中a,b,cR,适当地选取a,b,c的一组值计算f(1)和f(-1),所得出的正确结果只可能是()(A)4和6(B)3和-3(C)2和4(D)1和17.若偶

3、函数f(x)在(-,0)上单调递减,则不等式f(-1)f(lgx)的解集是()(A)(0,10)(B)(,10)(C)(,+)(D)(0,)(10,+)8.(2021梅州模拟)已知定义在R上的奇函数f(x),满足f(x-4)=-f(x),且在区间0,2上是增函数,则()(A)f(-25)f(11)f(80)(B)f(80)f(11)f(-25)(C)f(11)f(80)f(-25)(D)f(-25)f(80)f(11)9.设f(x)是定义在R上以2为周期的偶函数,已知x(0,1)时,f(x)=lo(1-x),则函数f(x)在(1,2)上()(A)是增函数,且f(x)0(C)是减函数,且f(x)

4、010.(力气挑战题)设f(x)是连续的偶函数,且当x0时是单调函数,则满足f(x)=f()的全部x之和为()(A)-3(B)3(C)-8(D)8二、填空题11.(2021开封模拟)函数f(x)=为奇函数,则a=.12.函数f(x)对于任意实数x满足条件f(x+2)=,若f(1)=-5,则f(f(5)=.13.(2022上海高考)已知y=f(x)+x2是奇函数,且f(1)=1,若g(x)=f(x)+2,则g(-1)=.14.(力气挑战题)函数y=f(x)(xR)有下列命题:在同一坐标系中,y=f(x+1)与y=f(-x+1)的图象关于直线x=1对称;若f(2-x)=f(x),则函数y=f(x)

5、的图象关于直线x=1对称;若f(x-1)=f(x+1),则函数y=f(x)是周期函数,且2是一个周期;若f(2-x)=-f(x),则函数y=f(x)的图象关于(1,0)对称,其中正确命题的序号是.三、解答题15.(2021汕头模拟)已知定义域为R的函数f(x)=是奇函数.(1)求a,b的值.(2)用定义证明f(x)在(-,+)上为减函数.(3)若对于任意tR,不等式f(t2-2t)+f(2t2-k)0得-1x0时,f(x)=lgx,故f(x)在(0,+)上单调递增,故选B.3.【解析】选A.g(x)是R上的奇函数,|g(x)|是R上的偶函数,从而f(x)+|g(x)|是偶函数,故选A.4.【解

6、析】选B.由f(-a)=-a3-sina+1=2得a3+sina=-1,所以f(a)=a3+sina+1=-1+1=0.5.【解析】选A.由于f(x)为定义在R上的奇函数,所以有f(0)=20+20+b=0,解得b=-1,所以当x0时,f(x)=2x+2x-1,所以f(-1)=-f(1)=-(21+21-1)=-3,故选A.6.【解析】选D.f(-x)=acos(-x)+b(-x)2+c=acosx+bx2+c=f(x),函数f(x)是偶函数,故选D.7.【解析】选D.由于f(x)为偶函数,所以f(x)=f(|x|).由于f(x)在(-,0)上单调递减,所以f(x)在(0,+)上单调递增.由f

7、(-1)1,即lgx1或lgx10或0x.8.【解析】选D.由f(x-4)=-f(x)知函数y=f(x)的周期T=8.故f(-25)=f(-25+38)=f(-1)=-f(1),f(11)=f(3+8)=f(3)=-f(3-4)=-f(-1)=f(1),f(80)=f(0+108)=f(0),由于f(x)在0,2上是增函数,故f(0)0.所以-f(1)f(0)f(1),即f(-25)f(80)f(11).9.【思路点拨】依据f(x)是周期为2的偶函数,把x(1,2)转化到2-x(0,1)上,再利用f(2-x)=f(x)求解.【解析】选D.由题意得当x(1,2)时,02-x1,0x-1lo1=0

8、,则可知当x(1,2)时,f(x)是减函数,选D.10.【解析】选C.由于f(x)是连续的偶函数,且x0时是单调函数,由偶函数的性质可知若f(x)=f(),只有两种状况:x=;x+=0,由知x2+3x-3=0,故两根之和为x1+x2=-3,由知x2+5x+3=0,故其两根之和为x3+x4=-5.因此满足条件的全部x之和为-8.11.【解析】由题意知,g(x)=(x+1)(x+a)为偶函数,a=-1.答案:-112.【解析】f(x+2)=,f(x+4)=f(x),f(5)=f(1)=-5,f(f(5)=f(-5)=f(3)=-.答案:-13.【思路点拨】先利用奇函数条件求出f(x)与f(-x)的

9、关系,从而f(1)与f(-1)的关系可求,即f(-1)可求,再求g(-1).【解析】y=f(x)+x2是奇函数,f(-x)+(-x)2=-f(x)+x2,f(x)+f(-x)+2x2=0,f(1)+f(-1)+2=0,f(1)=1,f(-1)=-3.g(x)=f(x)+2,g(-1)=f(-1)+2=-3+2=-1.答案:-114.【解析】对于,y=f(x+1)的图象由y=f(x)的图象向左平移1个单位得到,y=f(-x+1)的图象,由y=f(-x)的图象向右平移1个单位得到,而y=f(x)与y=f(-x)关于y轴对称,从而y=f(x+1)与y=f(-x+1)的图象关于直线x=0对称,故错;对

10、于,由f(2-x)=f(x)将x换为x+1可得f(1-x)=f(1+x),从而正确;对于,由f(x-1)=f(x+1)将x换为x+1可得,f(x+2)=f(x),从而正确.对于,由f(2-x)=-f(x)同上可得f(1-x)=-f(1+x),从而正确.答案:【误区警示】解答本题时,易误以为正确,出错的缘由是混淆了两个函数y=f(x+1)与y=f(-x+1)的图象关系与一个函数y=f(x)满足f(x+1)=f(-x+1)时图象的对称关系.【变式备选】设f(x)是(-,+)上的奇函数,且f(x+2)=-f(x),下面关于f(x)的判定:其中正确命题的序号为.f(4)=0;f(x)是以4为周期的函数

11、;f(x)的图象关于x=1对称;f(x)的图象关于x=2对称.【解析】f(x+2)=-f(x),f(x)=-f(x+2)=-(-f(x+2+2)=f(x+4),即f(x)的周期为4,正确.f(4)=f(0)=0(f(x)为奇函数),即正确.又f(x+2)=-f(x)=f(-x),f(x)的图象关于x=1对称,正确.又f(1)=-f(3),当f(1)0时,明显f(x)的图象不关于x=2对称,错误.答案:15.【解析】(1)f(x)为R上的奇函数,f(0)=0,b=1.又f(-x)=-f(x),得a=1.经检验a=1,b=1符合题意.(2)任取x1,x2R,且x1x2,则f(x1)-f(x2)=-

12、=,x1x2,-0,f(x1)-f(x2)0,f(x)为R上的减函数.(3)tR,不等式f(t2-2t)+f(2t2-k)0恒成立,f(t2-2t)-f(2t2-k),f(x)为奇函数,f(t2-2t)k-2t2,即k3t2-2t恒成立,而3t2-2t=3(t-)2-.k-.16.【解析】(1)由f(x+2)=-f(x),得f(x+4)=f(x+2)+2)=-f(x+2)=f(x),所以f(x)是以4为周期的周期函数,从而得f()=f(-14+)=f(-4)=-f(4-)=-(4-)=-4.(2)由f(x)是奇函数与f(x+2)=-f(x),得f(x-1)+2)=-f(x-1)= f(-(x-1),即f(1+x)=f(1-x).故知函数y=f(x)的图象关于直线x=1对称.又0x1时,f(x)=x,且f(x)的图象关于原点成中心对称,则f(x)的图象如图所示.当-4x4时,f(x)的图象与x轴围成的图形面积为S,则S=4SOAB=4(21)=4.关闭Word文档返回原板块。

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服