1、第一部分一14 一、选择题1(文)若直线l1:xay60与l2:(a2)x3y2a0平行,则l1与l2间的距离为()A.B.C. D.答案B解析由l1l2知3a(a2)且2a6(a2),2a218,求得a1,l1:xy60,l2:xy0,两条平行直线l1与l2间的距离为d.故选B.(理)已知直线l过圆x2(y3)24的圆心,且与直线xy10垂直,则l的方程是()Axy20Bxy20Cxy30Dxy30答案D解析圆心(0,3),又知所求直线斜率为1,直线方程为xy30.方法点拨1.两直线的位置关系方程约束条件位置关系l1:yk1xb1l2:yk2xb2l1:A1xB1yC10l2:A2xB2yC
2、20平行k1k2,且b1b2A1B2A2B10,且B1C2B2C10相交k1k2特殊地,l1l2k1k21A1B2A2B1特殊地,l1l2A1A2B1B20重合k1k2且b1b2A1B2A2B10且B1C2B2C102.与直线ykxb平行的直线设为ykxb1,垂直的直线设为yxm(k0);与直线AxByC0平行的直线设为AxByC10,垂直的直线设为BxAyC10.求两平行直线之间的距离可直接代入距离公式,也可在其中一条直线上取一点,求其到另一条直线的距离2(文)(2021安徽文,8)直线3x4yb与圆x2y22x2y10相切,则b的值是()A2或12B2或12C2或12D2或12答案D解析考
3、查1.直线与圆的位置关系;2.点到直线的距离公式直线3x4yb与圆心为(1,1),半径为1的圆相切,1b2或12,故选D.(理)(2021辽宁葫芦岛市一模)已知圆C与直线xy0及xy40都相切,圆心在直线xy0上,则圆C的方程为()A(x1)2(y1)22B(x1)2(y1)22C(x1)2(y1)22D(x1)2(y1)22答案B解析由题意知,圆心C既在与两直线xy0与xy40平行且距离相等的直线上,又在直线xy0上,设圆心C(a,a),半径为r,则由已知得,解得a1,r,故选B.方法点拨1.点与圆的位置关系几何法:利用点到圆心的距离d与半径r的关系推断:dr点在圆外,dr点在圆上;d0)的
4、位置关系如下表.方法位置关系几何法:依据d与r的大小关系代数法:消元得一元二次方程,依据判别式的符号 相交d0相切dr0相离dr0求出k的范围,再求倾斜角的范围1求直线的方程常用待定系数法2两条直线平行与垂直的判定可用一般式进行判定,也可以用斜率判定(理)(2021山东理,9)一条光线从点(2,3)射出,经y轴反射后与圆(x3)2(y2)21相切,则反射光线所在直线的斜率为()A或B或C或D或答案D解析由光的反射原理知,反射光线的反向延长线必过点(2,3),设反射光线所在直线的斜率为k,则其直线方程为y3k(x2),即kxy2k30,光线与圆(x3)2(y2)21相切,1,12k225k120
5、,解得k或k.故选D.4(文)(2022湖南文,6)若圆C1:x2y21与圆C2:x2y26x8ym0外切,则m()A21B19C9D11答案C解析本题考查了两圆的位置关系由条件知C1:x2y21,C2:(x3)2(y4)225m,圆心与半径分别为(0,0),(3,4),r11,r2,由两圆外切的性质知,51,m9.方法点拨圆与圆的位置关系表现形式位置关系几何表现:圆心距d与r1、r2的关系代数表现:两圆方程联立组成的方程组的解的状况相离dr1r2无解外切dr1r2一组实数解相交|r1r2|dr1r2两组不同实数解内切d|r1r2|(r1r2)一组实数解内含0d7或a或aC3a或a7Da7或a
6、3答案C解析本题主要考查直线和圆的位置关系、补集思想及分析、理解、解决问题的力气两条平行线与圆都相交时,由得a,两条直线都和圆相离时,由得a7,所以两条直线和圆“相切”时a的取值范围3a或a7,故选C.方法点拨与圆有关的最值问题主要题型有:1圆的半径最小时,圆面积最小2圆上点到定点距离最大(小)值问题,点在圆外时,最大值dr,最小值dr(d是圆心到定点距离);点在圆内时,最大值dr,最小值rd.3圆上点到定直线距离最值,设圆心到直线距离为d,直线与圆相离,则最大值dr,最小值dr;直线与圆相交,则最大值dr,最小值0.4P(x,y)为O上一动点,求x、y的表达式(如x2y,x2y2等)的取值范
7、围,一段利用表达式的几何意义转化二、填空题10(文)设直线mxy30与圆(x1)2(y2)24相交于A、B两点,且弦长为2,则m_.答案0解析圆的半径为2,弦长为2,弦心距为1,即得d1,解得m0.(理)在ABC中,角A、B、C的对边分别为a、b、c,若sin2Asin2Bsin2C,则直线axbyc0被圆x2y29所截得弦长为_答案2解析由正弦定理得a2b2c2,圆心到直线距离d,弦长l222.11在平面直角坐标系xOy中,已知圆x2y24上有且只有四个点到直线12x5yc0的距离为1,则实数c的取值范围是_答案(13,13)解析本题考查了直线与圆的位置关系,利用数形结合可解决此题,属中档题
8、要使圆x2y24上有且只有四个点到直线12x5yc0的距离为1,只需满足圆心到直线的距离小于1即可即1,解|c|13,13c0)的焦点,点A(2,m)在抛物线E上,且|AF|3.(1)求抛物线E的方程;(2)已知点G(1,0),延长AF交抛物线E于点B,证明:以点F为圆心且与直线GA相切的圆,必与直线GB相切分析考查:1.抛物线标准方程;2.直线和圆的位置关系(1)利用抛物线定义,将抛物线上的点到焦点距离和到准线距离相互转化;(2)欲证明以点F为圆心且与直线GA相切的圆,必与直线GB相切可证明点F到直线GA和直线GB的距离相等(此时需确定两条直线方程);也可以证明AGFBGF,可转化为证明两条
9、直线的斜率互为相反数解析法一:(1)由抛物线的定义得|AF|2.由于|AF|3,即23,解得p2,所以抛物线E的方程为y24x.(2)由于点A(2,m)在抛物线E:y24x上,所以m2,由抛物线的对称性,不妨设A(2,2)由A(2,2),F(1,0)可得直线AF的方程为y2(x1)由得2x25x20,解得x2或x,从而B(,)又G(1,0),所以kGA,kGB,所以kGAkGB0,从而AGFBGF,这表明点F到直线GA,GB的距离相等,故以F为圆心且与直线GA相切的圆必与直线GB相切法二:(1)同法一(2)设以点F为圆心且与直线GA相切的圆的半径为r.由于点A(2,m)在抛物线E:y24x上,
10、所以m2,由抛物线的对称性,不妨设A(2,2)由A(2,2),F(1,0)可得直线AF的方程为y2(x1)由得2x25x20.解得x2或x,从而B.又G(1,0),故直线GA的方程为2x3y20,从而r .又直线GB的方程为2x3y20,所以点F到直线GB的距离dr.这表明以点F为圆心且与直线GA相切的圆必与直线GB相切14(文)已知圆C:x2y2r2(r0)经过点(1,)(1)求圆C的方程;(2)是否存在经过点(1,1)的直线l,它与圆C相交于A、B两个不同点,且满足关系(O为坐标原点)的点M也在圆C上,假如存在,求出直线l的方程;假如不存在,请说明理由解析(1)由圆C:x2y2r2,再由点
11、(1,)在圆C上,得r212()24,所以圆C的方程为x2y24.(2)假设直线l存在,设A(x1,y1),B(x2,y2),M(x0,y0)若直线l的斜率存在,设直线l的方程为y1k(x1),联立消去y得,(1k2)x22k(k1)xk22k30,由韦达定理得x1x22,x1x21,y1y2k2x1x2k(k1)(x1x2)(k1)23,由于点A(x1,y1),B(x2,y2)在圆C上,因此,得xy4,xy4,由得,x0,y0,由于点M也在圆C上,则()2()24,整理得3x1x2y1y24,即x1x2y1y20,所以1(3)0,从而得,k22k10,即k1,因此,直线l的方程为y1x1,即
12、xy20.若直线l的斜率不存在,则A(1,),B(1,),M(,)()2()244,故点M不在圆上与题设冲突,综上所知:k1,直线方程为xy20.(理)已知圆O:x2y22交x轴于A、B两点,曲线C是以AB为长轴,离心率为的椭圆,其左焦点为F.若P是圆O上一点,连接PF,过原点O作直线PF的垂线交直线x2于点Q.(1)求椭圆C的标准方程;(2)若点P的坐标为(1,1),求证:直线PQ与圆O相切;(3)摸索究:当点P在圆O上运动时(不与A,B重合),直线PQ与圆O是否保持相切的位置关系?若是,请证明;若不是,请说明理由解析(1)由于a,e,所以c1,则b1,即椭圆C的标准方程为y21.(2)由于
13、P(1,1),F(1,0),所以kPF,kOQ2,所以直线OQ的方程为y2x.又Q在直线x2上,所以点Q(2,4)kPQ1,kOP1,kOPkPQ1,即OPPQ,故直线PQ与圆O相切(3)当点P在圆O上运动时,直线PQ与圆P保持相切的位置关系,设P(x0,y0),(x0),则y2x,kPF,kOQ,直线OQ的方程为yx,点Q(2,),kPQ,又kOP.kOPkPQ1,即OPPQ(P不与A、B重合),直线PQ始终与圆O相切15(文)(2022石家庄市质检)已知动圆C过定点M(0,2),且在x轴上截得弦长为4.设该动圆圆心的轨迹为曲线C.(1)求曲线C方程;(2)设点A为直线l:xy20上任意一点
14、,过A作曲线C的切线,切点分别为P、Q,求APQ面积的最小值及此时点A的坐标解析(1)设动圆圆心坐标为C(x,y),依据题意得,化简得x24y.(2)解法一:设直线PQ的方程为ykxb,由消去y得x24kx4b0.设P(x1,y1),Q(x2,y2),则,且16k216b以点P为切点的切线的斜率为y1x1,其切线方程为yy1x1(xx1),即yx1xx.同理过点Q的切线的方程为yx2xx.两条切线的交点A(xA,yB)在直线xy20上,解得,即A(2k,b)则:2kb20,即b22k,代入16k216b16k23232k16(k1)2160,|PQ|x1x2|4,A(2k,b)到直线PQ的距离
15、为d,SAPQ|PD|d4|k2b|4(k2b)4(k22k2)4(k1)21.当k1时,SAPQ最小,其最小值为4,此时点A的坐标为(2,0)解法二:设A(x0,y0)在直线xy20上,点P(x1,y1),Q(x2,y2)在抛物线x24y上,则以点P为切点的切线的斜率为y1x1,其切线方程为yy1x1(xx1),即yx1xy1,同理以点Q为切点的方程为yx2xy2.设两条切线均过点A(x0,y0),则点P,Q的坐标均满足方程y0xx0y,即直线PQ的方程为:yx0xy0,代入抛物线方程x24y消去y可得:x22x0x4y00|PQ|x1x2|A(x0,y0)到直线PQ的距离为d,SAPQ|P
16、Q|d|x4y0|(x4y0) (x4x08) (x02)24 当x02时,SAPQ最小,其最小值为4,此时点A的坐标为(2,0)(理)已知点A(2,0),B(2,0),直线PA与直线PB斜率之积为,记点P的轨迹为曲线C.(1)求曲线C的方程;(2)设M、N是曲线C上任意两点,且|,是否存在以原点为圆心且与MN总相切的圆?若存在,求出该圆的方程;若不存在,请说明理由解析(1)设P(x,y),则由直线PA与直线PB斜率之积为得,(x2),整理得曲线C的方程为1(x2)(2)若|,则.设M(x1,y1),N(x2,y2)若直线MN斜率不存在,则y2y1,N(x1,y1)由得1,又1.解得直线MN方程为x.原点O到直线MN的距离d.若直线MN斜率存在,设方程为ykxm.由得(4k23)x28kmx4m2120.x1x2,x1x2.(*)由得1,整理得(k21)x1x2km(x1x2)m20.代入(*)式解得7m212(k21)此时(4k23)x28kmx4m2120中0.此时原点O到直线MN的距离d.故原点O到直线MN的距离恒为d.存在以原点为圆心且与MN总相切的圆,方程为x2y2.