收藏 分销(赏)

基因工程药物的研究进展及其应用前景.doc讲课教案.doc

上传人:w****g 文档编号:3789195 上传时间:2024-07-18 格式:DOC 页数:8 大小:28.50KB
下载 相关 举报
基因工程药物的研究进展及其应用前景.doc讲课教案.doc_第1页
第1页 / 共8页
基因工程药物的研究进展及其应用前景.doc讲课教案.doc_第2页
第2页 / 共8页
基因工程药物的研究进展及其应用前景.doc讲课教案.doc_第3页
第3页 / 共8页
基因工程药物的研究进展及其应用前景.doc讲课教案.doc_第4页
第4页 / 共8页
基因工程药物的研究进展及其应用前景.doc讲课教案.doc_第5页
第5页 / 共8页
点击查看更多>>
资源描述

1、此文档仅供收集于网络,如有侵权请联系网站删除基因工程药物研究与应用新进展郭小周生物技术药物(biotech drugs)或称生物药物(biopharmaceutics)是集生物学、医学、药学的先进技术为一体,以组合化学、药学基因(功能抗原学、生物信息学等高技术为依托,以分子遗传学、分子生物、生物物理等基础学科的突破为后盾形成的产业。现在,世界生物制药技术的产业化已进入投资收获期,生物技术药品已应用和渗透到医药、保健食品和日化产品等各个领域,尤其在新药研究、开发、生产和改造传统制药工业中得到日益广泛的应用,生物制药产业已成为最活跃、进展最快的产业之一。 摘要:自20 世纪70 年代基因工程诞生以

2、来,以DNA重组技术为核心的现代生物技术一直是人们研究的热点,本文主要介绍了基因药物的定义、获得途径、一些前沿技术以及基因药物的应用与发展前景。关键词: 生物技术药物 基因工程药物 基因 发展前景1. 引言近年来1953年Waston和Crick发现遗传物质DNA的双螺旋结构,给整个生物学乃至整个人类社会带来了一场革命。此后,一系列有关遗传信息即基因研究的成果很快的向应用和开发拓展。1972年,美国斯坦福大学P.Berg博士研究小组使用EcorR,第一次在体外获得了包括SV40 DNA和噬菌体DNA的重组DNA分子。1973年,S.Cohen等将两中分别编码卡那霉素和四环素的抗性基因相连,构建

3、出重组的DNA分子,然后转化大肠杆菌,获得了既抗卡那霉素又抗四环素的转化子菌落,这是第一次成功的基因克隆实验,标志着基因工程的诞生。1977年Boyer首次获得生长激素抑制因子的克隆,1982年第一个基因工程重组产品人胰岛素被批准应用,进入市场。迄今为止,已有50多种基因工程药物上市,近千种处于研发状态。基因工程药物已经形成一个巨大的高新技术产业,产生了不可估量的社会效益和经济效益,由于基因药物的出现,可以大大改善人类的生命质量,对于一些重大疾病的治疗将会有新的突破。2 基因工程2.1 基因基因是脱氧核糖核酸(DNA)分子上的一个特定片段。不同基因的遗传信息,存在于各自片段上的碱基排列顺序之中

4、。基因通过转录出的信使使核糖核酸(mRNA),知道合成特定的蛋白质,使基因得以表达。2.2 基因工程基因工程是利用重组技术,在体外对生物的基因进行改造和重新组合,然后导入受体细胞内进行无性繁殖,使重组基因在受体细胞内表达,产生出需要的基因产物。3 基因药物基因工程药物又称生物技术药物,是根据人们的愿望设计的基因,在体外剪切组合,并和载体DNA 连接,然后将载体导入靶细胞(微生物、哺乳动物细胞或人体组织靶细胞) ,使目的基因在靶细胞中得到表达,最后将表达的目的蛋白质纯化及做成制剂,从而成为蛋白类药或疫苗。基因工程药物的本质是蛋白质,生产基因工程药物的方法是:将目的基因连接在载体上,然后将导入靶细

5、胞(微生物、哺乳动物细胞或人体组织靶细胞),使目的基因在靶细胞中的到表达,最后将表达的目的蛋白质提纯做成制剂,从而成为蛋白类药或疫苗。若目的基因直接在人体组织靶细胞表达,就称为基因治疗。利用基因工程技术生产药品的优点在于:大量生产过去难以获得的生理活性物质和多肽;挖掘更多的生理活性物质和多肽;改造内源生理活性物质;可获得新型化合物,扩大药物筛选来源。4 基因药物获得途径4.1 转基因植物利用转基因植物生产基因工程疫苗,是将抗原基因导入植物,让其在植物中表达,人或动物摄入该植物或其中的抗原蛋白质,以产生对某抗原的免疫应答。转基因植物生产疫苗的研究主要集中在烟草、马铃薯、蕃茄、香蕉等植物。转基因植

6、物生产疫苗有两种方法: 一是建立整合抗原基因的稳定表达植株。用农杆菌T-DNA 载体或微粒子轰击法将抗原基因导入植物细胞, 并整合到植物基因组, 建立稳定表达的植株, 并可通过无性或有性繁殖生产大量的转基因植物, 也可通过杂交获得产生多种抗原的多价复合疫苗。二是建立瞬时表达的植株,如用烟草花叶病毒、豇豆花叶病毒作表达载体转染植物细胞,瞬时表达产量较高。4.2 转基因动物利用转基因动物乳腺作为生物反应器, 生产基因工程人类蛋白质药物, 其成本较微生物发酵、动物细胞培养生产基因工程药物大大降低, 故近年不少研究者从事转基因动物乳腺生物反应器生产基因工程药物的研究。动物乳腺生物反应器(Mammary

7、 gland bioreactor)属于转基因动物范畴,是利用转基因动物的乳腺组织生产基因工程人类药用蛋白。在国外,首批转基因动物乳腺表达产品是抗凝血酶(AT-III) 、抗胰蛋白酶(AAT ) 、葡萄糖苷酶、蛋白C、乳转铁蛋白以及第八因子(F-) 等,其表达水平分别为6g/L、35g/L、10g/L、1g/L、35g/L和3g/L,受体动物分别为山羊、绵羊、家兔、猪、奶牛和猪,这些都是血源产品。随着此项研究的不断深入,乳腺表达产品从小分子肽到大分子蛋白质,从分泌型蛋白到内膜蛋白、多聚蛋白和二价抗体多种蛋白质。乳腺生物反应器生产基因工程药物的基本原理是应用重组DNA 技术和转基因技术,将目的基

8、因转移到尚处于原核阶段(或12 细胞的受精卵) 的动物胚胎中,经胚胎移植,得到转基因乳腺表达的个体,在泌乳期药用蛋白质基因表达, 从动物乳汁可获得基因工程药物。4.3 发酵培养利用微生物发酵、动物细胞培养是目前工业化生产基因工程药物的最主要方法。许多活性多肽和蛋白质具有治疗和预防疾病的作用,但在组织细胞内产量极微,采用常规方法很难获得足够量以供临床应用。基因工程则突破了这一局限性,可大量生产这类多肽和蛋白质,迄今已成功地生产出胰岛素、干扰素、生长激素、生长激素释放抑制因子等百余种产品,其中许多已成为临床治疗的有力武器,并创造了显著的经济效益。4.4 基因治疗基因治疗就是从遗传物质本身,即基因入

9、手,不必产生或纯化基因的最终产物,而是将基因,通常是通过一个载体直接导入人体,再利用人体自身就具有的基因复制、转录与翻译功能来产生这些产物,达到补充正常基因产物或对抗异常基因的目的。将基因导入哺乳类动物细胞的方法有两种,一类是理化方法,一类是病毒介导的DNA转移。基因治疗主要应用于:(一)肿瘤的基因治疗 肿瘤的研究方法绝大部分是在DNA、RNA和蛋白质水平进行的,基因芯片凭借高效、高通量、高敏感性等特点,研究肿瘤细胞基因在发生发展过程中的不同表达形态,对肿瘤的诊断和治疗具有十分重要的意义。在诊断过程中主要用于基因突变检测,寻找新的肿瘤相关基因和检测基因多态性。此外,基因芯片技术的重复性和再现性

10、也较好。基因毒素治疗系通过外源性酶将细胞内的非毒性药物前体转变为毒性药物从而杀死肿瘤细胞的方法,又称为基因药物前体激活治疗(GPAT)。植物、真菌、细菌和病毒等常利用它们独特的代谢途径以适应其生命周期和生活环境。这些代谢途径是哺乳类生物细胞没有的,在被感染的哺乳类生物细胞中,这种特征性作用于药物前体的酶被选择性代谢而激活,从而导致细胞被破坏、死亡。而此药物前体本身对非感染的哺乳类生物细胞无毒。向哺乳类生物细胞转移编码这些酶的基因,足以改变药物前体对酶的敏感性。 (二)遗传性疾病基因治疗(三)感染性疾病的治疗如艾滋病的治疗。 基因治疗学探索各种疾病的发病机理,以分离出新的靶基因供筛选使用。在基因

11、诊断和基因治疗中,揭示疾病发生机理的最关键前提条件是要找到特定疾病的相关基因, “人类基因组计划”(Human Genomic Project ,HGP)给最终找到各种疾病相关基因带来了曙光。5 基因药物的前沿技术基因药物的直接体内基因治疗发展迅速,新型基因药物不断产生。现着重介绍对效果比较肯定关于基因药物的几项前沿技术,基因疫苗、反义RNA 药物、三链DNA 药物这三种新型基因药物技术的基本方法。5.1 基因疫苗5.1.1基因疫苗的免疫方法基因疫苗的免疫方法即基因疫苗的给药途径,目前使用的方法有以下几种:(1) 裸DNA 直接注射:将裸质粒DNA 直接注射到机体的肌肉、皮内、皮下、粘膜、静脉

12、内。这种方法简单易行。(2) 脂质体包裹DNA 直接注射:包裹DNA 的脂质体能与组织细胞发生膜融合,而将DNA 摄入,减少了核酸酶对DNA 的破坏。注射途径同裸DNA直接注射。(3) 金包被DNA 基因枪轰击法:将质粒DNA 包被在金微粒子表面,用基因枪使包被DNA 的金微粒子高速穿入组织细胞。(4) 繁殖缺陷细菌携带质粒DNA 法:选择一种容易进入某组织器官的细菌,将其繁殖基因去掉,然后用质粒DNA 转化细菌,当这些细菌进入某组织器官后,由于不能繁殖,则自身裂解而释放出质粒DNA。5.2 反义RNA反义RNA 指与mRNA 互补后,能抑制与疾病发生直接相关基因的表达的RNA。它封闭基因表达

13、,具有特异性强、操作简单的特点,可用来治疗由基因突变或过度表达导致的疾病和严重感染性疾病,。反义RNA 治疗的基本方法有:(1)反义寡核苷酸:体外合成十至几十个核苷酸的反义寡核苷酸或反义硫代磷酸酯寡核苷酸序列,用脂质体等将反义寡核苷酸导入体内靶细胞,然后反义寡核苷酸与相应mRNA特异性结合,从而阻断mRNA 的翻译。(2)反义RNA表达载体:合成或PCR 扩增获取反义RNA 的DNA ,将它克隆到表达载体,然后将表达载体用脂质体导入靶细胞, 该DNA 转录反义RNA ,反义RNA 即与相应的mRNA 特异性结合,同样阻断某基因的翻译。反义RNA目前主要用于恶性肿瘤、病毒感染性疾病等。有报导,用

14、反义封闭胰腺癌、肺癌的癌基因,对癌细胞具有明显的抑制作用。5.3 三链DNA脱氧寡核苷酸能与双螺旋双链DNA 专一性序列结合,形成三链DNA ,来阻止基因转录或DNA 复制,此脱氧寡核苷酸被称为三链DNA 形成脱氧寡核苷酸( TFO) 。为了与作用在mRNA 翻译水平的反义RNA 的反义技术相区别,将三链DNA 技术称之为反基因技术。5.3.1基本方法与机理设计合成1540个碱基的脱氧寡核苷酸, 这些序列具有较短而兼并性较高的特点, 与双链DNA结合,通常结合在蛋白识别位点处,形成三链DNA ,干扰DNA与蛋白质的结合, 如转录激活因子, 从而阻止基因的转录与复制。6 基因药物的现状和应用及部

15、分基因药物生物技术的开发迅猛异常、日新月异。生物技术的核心是基因工程, 基因工程技术最成功的是用于生物治疗的新型药物的研制。已有近50 种基因工程药物投入市场, 产生了巨大的社会效益和经济效益。生物技术用于疾病的预防和疑难病症的治疗已经成为现实。基因药物主要为以下几个系列:一、干扰素系列(IFN) IFN是一类具有广谱抗病毒活性的蛋白质,仅在同种细胞上可发挥作用。根据其来源、理化及生物学性质的不同,可分为IFN-、IFN-、IFN- 3种干扰素。干扰素具有很强的生物活性,主要表现在:(一)抗病毒作用 目前慢性丙型肝炎的治疗以IFN-为首选。(二)抗肿瘤作用(三)免疫调节作用。二、白介素系列 白

16、细胞介素是非常重要的细胞因子家族,现在得到承认的成员已达15个;它们在免疫细胞的成熟、活化、增殖和免疫调节等一系列过程中均发挥重要作用,此外它们还参与机体的多种生理及病理反应。三、集落刺激因子类药物(CSF) 一些细胞因子可刺激不同的造血干细胞在半固体培养基中形成细胞集落,这些因子被命名为集落刺激因子,根据其作用对象,进一步命名分为粒细胞-CSF,巨噬细胞-CSF,粒细胞和巨噬细胞-CSF及多集落刺激因子。四、其他基因工程药物(1)促进红细胞生成素 促红细胞生成素(Epo)是一种调节红细胞生成的体液因子,自从成功地克隆人类Epo基因后,其产物重组人促红细胞生成素被成功用于治疗肾性贫血及肿瘤等疾

17、病伴发的贫血。最近的研究认为Epo是一种由缺氧诱导因子(Hypoxia-inducible factor,HIF)家庭诱导产生的多功能细胞因子超家庭成员,对于多种器官都有保护作用。有报导,Epo能通过降低肾IRI时MDA、IL-6水平,增加SOD水平从而发挥保护作用,而最新研究还表明Epo有促进血管生成的作用。(2)人生长激素人类的生长激素(Growth hormone,GH)是一条单链、非糖化、191个氨基酸组成的亲水性球蛋白,分子量21700Da,等电点pI为4.9. 人生长激素具有促生长、促进蛋白质合成、对脂肪、糖、能量代谢有影响。(3)人表皮生长因子 皮肤细胞表达10种以上的生长因子,

18、它们以自分泌和旁分泌的方式对细胞自身和邻近细胞进行多种调节。(4)重组链激酶 对心脑血管疾病有一定的疗效。(5)肿瘤坏死因子 研究表明,巨噬细胞是产生TNF的主要来源。当肝、脾等网状内皮系统受到刺激后,借助于脂多糖的帮助,TNF基因开始转录,产生并释放TNF。同时B淋巴细胞也产生一种与TNF类似的淋巴毒素,并与TNF享有共同受体。为了便于区分二者,将巨噬细胞产生的毒素称为TNF,淋巴细胞产生的毒素称为TNF-。TNF-是迄今为止发现的抗肿瘤作用最强的细胞因子,它能特异性地直接杀伤肿瘤细胞,而对正常细胞无不良影响,能抑制肿瘤细胞的增殖并促使其溶解,还可激活机体的抗肿瘤免疫反应。但是由于TNF-能

19、被肾快速排泄和各种蛋白酶分解作用,在体内很不稳定,半衰期很短(1530min),而杀伤肿瘤细胞需要1236 h。若希望通过静脉给药获得明显的抗肿瘤效果,则必须频繁大剂量注射,进而导致严重的不良反应。目前国内外学者对其的制剂研究主要集中在高分子化学修饰和药物载体传递系统两方面无论采取何种手段,其最终目的有二:一是减少RES的摄取,延长药物血中半衰期;二是提高药物的靶向性,降低不良反应。7 基因药物的发展前景与传统制药相比,生物制药有便于大规模生产、利润高、生产工艺简单、人力投入少、无污染、生产周期短等优点,因此,随着人类基因组计划的实施和科技水平的进一步发展,基因药物在医药市场的比例也将会日益提

20、升,也将越来越影响人类的生活。基因药物同时具有高投入、高收益、高风险、长周期的特征。 Frost&Sullivan公司的一份最新报告指出,2004年,全球生物制药市场的收入为450亿美元。到2011年,其有望达到982亿美元。据预测,全球第一个用转基因植物生产的生物药物可望于20052006年上市。随着公众认知度的提高和相关法规的逐步完善,用转基因植物生产生物药物的市场将飞速增长,到2011年,单美国市场就将达到22亿美元。 2002年底到2003年5月间一场突如其来的SARS疫情,再加上2005年度禽流感病毒传播,席卷了亚洲及加拿大等地。在紧张而又严肃的应对这场疫情的过程中,生物制药又成为医

21、药行业人士关注的焦点。我国生物制品需求巨大,过去的几年我国企业一直能保持年均15以上增幅,并且近年来销售的增长速度有加快的趋势。据统计,2005年国内生物制品销售收入总额为1574亿元人民币,销售利润总额为38.7亿元人民币。预计到2006年生物技术工业总产值将达400亿到500亿元,到2015年总产值可达1100亿到1300亿元。 我国的生物制药业将进入一个快速发展的阶段,生物医药工业将成为医药产业增长最快的部分。目前,我国许多省市已将生物制药作为本地的支柱产业重点扶持。一大批生物医药科技园相继在各地高新技术开发区建成。面对入世带给我国生物制药业的挑战和机遇,专家们预测,在未来若干年,我国的

22、生物制药业将以超过全球平均增长速度步入高速发展轨道,前景十分广阔。 参考文献:1 张天民,基因工程药物浅释J.山东肉类科技,1997,1 2 李拥军,基因工程药物及其产业化发展J.生产力研究,2003,3:185.3 阚劲松,吴克,基因工程制药研究进展J.合肥联合大学学报,2000,10(4):108. 4 唐冬生,夏家辉,新型基因工程药物J.生命科学研究,1999,3(2):93.4 袁建民等,动物乳腺生物反应器研究进展,中国农学通报,2006.22(2):20.5 韩玉刚,李建凡,动物生物反应器的现状和进展J.国外畜牧科技,2002,29(1):30-33 6 张忠诚,动物乳腺生物反应器的原理及研究进展,中国奶牛,2006,4:29.7 孔秀英 ,孙秀杰, 基因治疗, 生物学杂志J.2005,7(2):63.8 陈诗书,人类基因治疗研究的新进展,生物工程进展J.1994,14(1):30.9 张明徽,基因治疗的现状与展望,世界科学J.1995,10:20-21.10 罗登,基因治疗新时期,生物工程进展,1994,14(4):28-29. 22 胡蝶,廖静基因芯片技术在肿瘤研究中的应用J.首都医科大学学报,2004,25(1):1 2911 陆祖宏,何农跃,孙啸基因芯片技术在基因药物研究和开发中的应用J.中国药科大学学报2001,32(2):81 只供学习与交流

展开阅读全文
相似文档                                   自信AI助手自信AI助手
猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服