1、八年级数学下册教学计划一、学情分析八年级是初中学习过程中的关键时期,起着承上启下的作用。下学期尤为重要,学生基础的好坏,直接影响到将来是否能升学。学生通过上学期的学习,算能力、阅读理解能力、实践探究能力得到了发展与培养,对图形及图形间数量关系有初步的认识,逻辑思维与逻辑推理能力得到了发展与培养,通过教育教学培养,绝大部分学生能够认真对待每次作业并及时纠正作业中的错误,课堂上能专心致志的进行学习与思考,学生的学习兴趣得到了激发和进一步的发展,课堂整体表现较为活跃。本学期将继续促进学生自主学习,让学生亲身参与活动,进行探索与发现,以自身的体验获取知识与技能;努力实现基础性与现代性的统一,提高学生的
2、创新精神和实践能力;进一步激发学生的数学兴趣和爱好,通过各种教学手段帮助学生理解概念,操作运算,扩展思路。要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学的主体,教师是教的主体作用,注重方法,培养能力。关注学困生和女生。二、教材分析本学期教学内容共计五章,知识的前后联系,教材的教学目标,重、难点分析如下:第十六章二次根式 本章主要内容是二次根式的概念、性质、化简和有关的计算。本章重点是理解二次根式的性质,及二次根式的化简和计算。本章的难点是正确理解二次根式的性质和运算法则。第十七章勾股定理直角三角形是一种特殊的三角形,它有许多重要的性质,如两个锐角互余,30度角所对的直
3、角边等于斜边的一半,本章所研究的勾股定理,也是直角三角形的性质,而且是一条非常重要的性质,本章分为两节,第一节介绍勾股定理及其应用,第二节介绍勾股定理的逆定理。第十八章平行四边形 四边形是人们日常生活中应用较广泛的一种图形,尤其是平行四边形、矩形、菱形、正方形等特殊四边形的用处更多。因此,四边形既是几何中的基本图形,也是“空间与图形”领域研究的主要对象之一。本章是在学生前面学段已经学过的四边形知识、本学段学过的多边形、平行线、三角形的有关知识的基础上来学习的,也可以说是在已有知识的基础上做进一步系统的整理和研究,本章内容的学习也反复运用了平行线和三角形的知识。从这个角度来看,本章的内容也是前面
4、平行线和三角形等内容的应用和深化。 第十九章一次函数一次函数通过对变量的考察,体会函数的概念,并进一步研究其中最为简单的一种函数一次函数。了解函数的有关性质和研究方法,并初步形成利用函数的观点认识现实世界的意识和能力。在教材中,通过体现“问题情境建立数学模型概念、规律、应用与拓展的模式,让学生从实际问题情境中抽象出函数以及一次函数的概念,并进行探索一次函数及其图象的性质,最后利用一次函数及其图象解决有关现实问题;同时在教学顺序上,将正比例函数纳入一次函数的研究中去。教材注意新旧知识的比较与联系,如在教材中,加强了一次函数与一次方程(组、一次不等式的联系等。) 第二十章数据的分析本章主要研究平均
5、数、中位数、众数以及极差、方差等统计量的统计意义,学习如何利用这些统计量分析数据的集中趋势和离散情况,并通过研究如何用样本的平均数和方差估计总体的平均数和方差,进一步体会用样本估计总体的思想。161二次根式教学内容二次根式的概念及其运用教学目标理解二次根式的概念,并利用a(a0)的意义解答具体题目提出问题,根据问题给出概念,应用概念解决实际问题教学重难点关键1 重点:形如a(a0)的式子叫做二次根式的概念;2难点与关键:利用“a(a0)”解决具体问题教学过程一、复习引入(学生活动)请同学们独立完成下列三个课本P2的三个思考题:二、探索新知很明显、,都是一些正数的算术平方根像这样一些正数的算术平
6、方根的式子,我们就把它称二次根式因此,一般地,我们把形如(a0)的式子叫做二次根式,“”称为二次根号(学生活动)议一议:1-1有算术平方根吗?20的算术平方根是多少?3.当a0)、()、分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0解:二次根式有:、(x0)、+(x0,y0);不是二次根式的有:、例2当x是多少时,-在实数范围内有意义?分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-10,才能有意义解:由3x-10,得:x;当x时, 在实数范围内有意义 三、巩固练习教材P5练习1、2、3四、应用拓展例3 当x是多少时,+在实数范围内有意义?分析:
7、要使+在实数范围内有意义,必须同时满足+中的值0和中的x+10解:依题意,得+由得:x由得:x-1当x且x-1时,在实数范围内有意义四、归纳小结(学生活动,老师点评)本节课要掌握:1形如(a0)的式子叫做二次根式,“”称为二次根号2要使二次根式在实数范围内有意义,必须满足被开方数是非负数五、布置作业1教材P51,2,3,42选用课时作业设计171勾股定理(一)一、教学目的1了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。2培养在实际生活中发现问题总结规律的意识和能力。3介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。二、重点、难点1重点:勾股定
8、理的内容及证明。2难点:勾股定理的证明。三、例题的意图分析例1(补充)通过对定理的证明,让学生确信定理的正确性;通过拼图,发散学生的思维,锻炼学生的动手实践能力;这个古老的精彩的证法,出自我国古代无名数学家之手。激发学生的民族自豪感,和爱国情怀。例2使学生明确,图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变。进一步让学生确信勾股定理的正确性。四、课堂引入目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。这个事实可以说
9、明勾股定理的重大意义。尤其是在两千年前,是非常了不起的成就。 让学生画一个直角边为3cm和4cm的直角ABC,用刻度尺量出AB的长。以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。再画一个两直角边为5和12的直角ABC,用刻度尺量AB的长。你是否发现32+42与52的关系,52+122和132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2。对于任意的直角三角形也有这个性质吗?五、例习题分析例1(补充)已知:在ABC中,C=90,A、B、C的对边为a、b、c。求证:a2b2=c2。分析:让学生准备多个三角形模型,最好是有颜色的吹塑纸,让学生拼摆不同的形状,利用面积相等进行证明。拼成如图所示,其等量关系为:4S+S小正=S大正421ab(ba)2=c2,化简可证。发挥学生的想象能力拼出不同的图形,进行证明。勾股定理的证明方法,达300余种。这个古老的精彩的证法,出自我国古代无名数学家之手。激发学生的民族自豪感,和爱国情怀。