收藏 分销(赏)

2020中考数学复习微专题:最值(“胡不归”问题)说课讲解.doc

上传人:天**** 文档编号:3774308 上传时间:2024-07-17 格式:DOC 页数:8 大小:301.50KB
下载 相关 举报
2020中考数学复习微专题:最值(“胡不归”问题)说课讲解.doc_第1页
第1页 / 共8页
2020中考数学复习微专题:最值(“胡不归”问题)说课讲解.doc_第2页
第2页 / 共8页
2020中考数学复习微专题:最值(“胡不归”问题)说课讲解.doc_第3页
第3页 / 共8页
2020中考数学复习微专题:最值(“胡不归”问题)说课讲解.doc_第4页
第4页 / 共8页
2020中考数学复习微专题:最值(“胡不归”问题)说课讲解.doc_第5页
第5页 / 共8页
点击查看更多>>
资源描述

1、2020中考数学复习微专题:最值(“胡不归”问题)精品文档2020中考数学复习微专题:最值(“胡不归”问题)突破与提升策略【故事介绍】从前有个少年外出求学,某天不幸得知老父亲病危的消息,便立即赶路回家根据“两点之间线段最短”,虽然从他此刻位置A到家B之间是一片砂石地,但他义无反顾踏上归途,当赶到家时,老人刚咽了气,小伙子追悔莫及失声痛哭邻居告诉小伙子说,老人弥留之际不断念叨着“胡不归?胡不归?”(“胡”同“何”)而如果先沿着驿道AC先走一段,再走砂石地,会不会更早些到家?【模型建立】如图,一动点P在直线MN外的运动速度为V1,在直线MN上运动的速度为V2,且V10)与轴从左至右依次交于A,B两

2、点,与y轴交于点C,经过点B的直线与抛物线的另一交点为D(1)若点D的横坐标为-5,求抛物线的函数表达式;(2)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?【分析】第一小问代点坐标,求解析式即可,此处我们直接写答案:A(-2,0),B(4,0),直线解析式为,D点坐标为,故抛物线解析式为,化简为:另外为了突出问题,此处略去了该题的第二小问点M运动的时间为,即求的最小值 接下来问题便是如何构造,考虑BD与x轴夹角为30,

3、且DF方向不变,故过点D作DMx轴,过点F作FHDM交DM于H点,则任意位置均有FH=当A、F、H共线时取到最小值,根据A、D两点坐标可得结果4.抛物线与x轴交于点A,B(点A在点B的左边),与y轴交于点C点P是直线AC上方抛物线上一点,PFx轴于点F,PF与线段AC交于点E;将线段OB沿x轴左右平移,线段OB的对应线段是O1B1,当的值最大时,求四边形PO1B1C周长的最小值,并求出对应的点O1的坐标(为突出问题,删去了两个小问)【分析】根据抛物线解析式得A、B、C,直线AC的解析式为:,可知AC与x轴夹角为30根据题意考虑,P在何处时,PE+取到最大值过点E作EHy轴交y轴于H点,则CEH=30,故CH=,问题转化为PE+CH何时取到最小值考虑到PE于CH并无公共端点,故用代数法计算,设,则,当P点坐标为时,取到最小值,故确定P、C、求四边形面积最小值,运用将军饮马模型解题即可收集于网络,如有侵权请联系管理员删除

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 考试专区 > 中考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服