1、高中数学选修1-2学生学案教师 版精品文档第一章 统计案例1.1回归分析的基本思想及其初步应用线性回归方程1回归分析(1)函数关系是一种确定性关系,而相关关系是一种非确定性关系,即自变量取值一定时,因变量的取值带有一定的随机性的两个变量之间的关系叫做相关关系(2)回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法,回归分析的基本步骤是画出两个变量的散点图,求回归直线方程,并用回归直线方程进行预报2线性回归模型(1)线性回归模型ybxae,其中a和 b是模型的未知参数,e称为随机误差自变量x称为解释变量,因变量y称为预报变量(2)在回归方程x中,=_ ,.其中_,_i, (,)称为样本
2、点的中心线性回归方程中系数的含义(1)是回归直线的斜率的估计值,表示x每增加一个单位,y的平均增加单位数,而不是增加单位数(2)当0时,变量y与x具有正的线性相关关系;当0时,变量y与x具有负的线性相关关系.线性回归分析1残差分析(1)残差:样本点(xn,yn)的随机误差eiyibxia,其估计值为iyiiyixi,i称为相应于点(xi,yi)的残差(residual)(以上i1,2,n)(2)残差图:作图时,纵坐标为残差,横坐标可以选为样本编号,或xi数据,或yi数据,这样作出的图形称为残差图(3)残差分析:残差分析即通过残差发现原始数据中的可疑数据,判断所建立模型的拟合效果,其步骤为:计算
3、残差画残差图在残差图中分析残差特性残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适,这样的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高2相关指数我们可以用相关指数R2来刻画回归的效果,其计算公式是:R2_.R2越大,残差平方和_越小,即模型的拟合效果越好;R2越小,残差平方和越大,即模型的拟合效果越差在线性回归模型中,R2的取值范围为0,1,R2表示解释变量对于预报变量变化的贡献率,1R2表示随机误差对于预报变量变化的贡献率R2越接近于1,表示回归的效果越好残差分析的注意点在残差图中,可疑数据的特征表现为:(1)个别样本点的残差过大,即大多数的残差点比较均匀地落
4、在水平的带状区域中,而个别残差点偏离该区域过于明显,需要确认在采集这些样本点的过程中是否有人为的错误,如果采集数据有错误,那么需要纠正,然后重新利用线性回归模型拟合数据;如果数据采集没有错误,那么需要寻找其他原因(2)残差图有异常,即残差呈现不随机的规律性,此时需要考虑所采用的线性回归模型是否合适例1某种产品的广告费支出x(单位:百万元)与销售额y(单位:百万元)之间有如下对应数据:x24568y3040605070(1)试根据数据预报广告费支出1 000万元的销售额;(2)若广告费支出1 000万元的实际销售额为8 500万元,求误差解:(1)从画出的散点图(图略)可看出,这些点在一条直线附
5、近,可以建立销售额y对广告费支出x的线性回归方程由题中数据计算可得5,50,由公式计算得6.5,17.5,所以y对x的线性回归方程为6.5x17.5.因此,对于广告费支出为1 000万元(即10百万元),由线性回归方程可以预报销售额为6.51017.582.5(百万元)(2)8 500万元即85百万元,实际数据与预报值的误差为8582.52.5(百万元)求线性回归方程的步骤(1)列表表示xi,yi,xiyi;(2)计算 ,(3)代入公式计算,的值;(4)写出回归直线方程例2某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了10次试验,测得的数据如下:编号12345678910零件
6、数x/个102030405060708090100加工时间y/分626875818995102108115122(1)建立零件数为解释变量,加工时间为预报变量的回归模型,并计算残差;(2)你认为这个模型能较好地刻画零件数和加工时间的关系吗?解(1)根据表中数据画出散点图,如图所示由图可看出,这些点在一条直线附近,可以用线性回归模型来拟合数据计算得加工时间对零件数的线性回归方程为0.668x54.93.残差数据如下表:编号12345残差0.390.290.030.650.67编号678910残差0.010.310.370.050.27(2)以零件数为横坐标,残差为纵坐标画出残差图如图所示由图可知
7、,残差点分布较均匀,即用上述回归模型拟合数据效果很好但需注意,由残差图可以看出,第4个样本点和第5个样本点的残差比较大,需要确认在采集这两个样本点的过程中是否有人为的错误类题通法残差分析应注意的问题利用残差分析研究两个变量间的关系时,首先要根据散点图来粗略判断它们是否线性相关,是否可以用线性回归模型来拟合数据然后通过图形来分析残差特性,用残差1,2,n来判断原始数据中是否存在可疑数据,用R2来刻画模型拟合的效果活学活用已知某种商品的价格x(元)与需求量y(件)之间的关系有如下一组数据:x1416182022y1210753求y关于x的回归直线方程,并说明回归模型拟合效果的好坏解:(141618
8、2022)18,(1210753)7.4,1421621822022221 660,iyi14121610187205223620,所以1.15,7.41.151828.1,所以所求回归直线方程是1.15x28.1.列出残差表:yii00.30.40.10.2yi4.62.60.42.44.4所以(yii)20.3,(yi)253.2,R210.994,所以回归模型的拟合效果很好.例3在一次抽样调查中测得样本的5个样本点,数值如下表:x0.250.5124y1612521试建立y与x之间的回归方程解作出变量y与x之间的散点图如图所示由图可知变量y与x近似地呈反比例函数关系设y,令t,则ykt.
9、由y与x的数据表可得y与t的数据表:t4210.50.25y1612521作出y与t的散点图如图所示由图可知y与t呈近似的线性相关关系又1.55,7.2,iyi94.25,21.312 5,4.134 4,7.24.134 41.550.8,4.134 4t0.8.所以y与x的回归方程是0.8.类题通法非线性回归分析的步骤非线性回归问题有时并不给出经验公式这时我们可以画出已知数据的散点图,把它与学过的各种函数(幂函数、指数函数、对数函数等)图象作比较,挑选一种跟这些散点拟合得最好的函数,然后采用适当的变量变换,把问题化为线性回归分析问题,使之得到解决其一般步骤为:活学活用某电容器充电后,电压达
10、到100 V,然后开始放电,由经验知道,此后电压U随时间t变化的规律用公式UAebt(b0)表示,现测得时间t(s)时的电压U(V)如下表:t/s012345678910U/V100755540302015101055试求:电压U对时间t的回归方程(提示:对公式两边取自然对数,把问题转化为线性回归分析问题)解:对UAebt两边取对数得ln Uln Abt,令yln U,aln A,xt,则yabx,y与x的数据如下表:x012345678910y4.64.34.03.73.43.02.72.32.31.61.6根据表中数据画出散点图,如图所示,从图中可以看出,y与x具有较好的线性相关关系,由表
11、中数据求得5,3.045,由公式计算得0.313,4.61,所以y对x的线性回归方程为0.313x4.61.所以ln 0.313t4.61,即e0.313t4.61e0.313te4.61,因此电压U对时间t的回归方程为e0.313te4.61.典例下列现象的线性相关程度最高的是()A某商店的职工人数与商品销售额之间的相关系数为0.87B流通费用率与商业利润率之间的相关系数为0.94C商品销售额与商业利润率之间的相关系数为0.51D商品销售额与流通费用率之间的相关系数为0.81解析|r|越接近于1,相关程度越高答案B易错防范1本题易错误地认为r越接近于1,相关程度越高,从而误选A.2变量之间线
12、性相关系数r具有如下性质:(1)r21,故变量之间线性相关系数r的取值范围为1,1(2)|r|越大,变量之间的线性相关程度越高;|r|越接近0,变量之间的线性相关程度越低(3)当r0时,两个变量的值总体上呈现出同时增减的趋势,此时称两个变量正相关;当r0时,一个变量增加,另一个变量有减少的趋势,称两个变量负相关;当r0时,称两个变量线性不相关成功破障变量X与Y相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1)r1表示变量Y与X之间的线性相
13、关系数,r2表示变量V与U之间的线性相关系数,则()Ar2r10B0r2r1Cr20r1 Dr2r1解析:选C对于变量X与Y而言,Y随X的增大而增大,故变量Y与X正相关,即r10;对于变量U与V而言,V随U的增大而减小,故变量V与U负相关,即r20.故r20r1.随堂即时演练1(湖北高考)四名同学根据各自的样本数据研究变量x,y之间的相关关系,并求得回归直线方程,分别得到以下四个结论:y与x负相关且2.347x6.423;y与x负相关且3.476x5.648; y与x正相关且5.437x8.493;y与x正相关且4.326x4.578.其中一定不正确的结论的序号是()ABC D解析:选D中y与
14、x负相关而斜率为正,不正确;中y与x正相关而斜率为负,不正确2关于回归分析,下列说法错误的是()A在回归分析中,变量间的关系若是非确定性关系,那么因变量不能由自变量唯一确定B线性相关系数可以是正的也可以是负的C在回归分析中,如果r21或r1,说明x与y之间完全线性相关D样本相关系数r(1,1)解析:选D样本的相关系数应满足1r1.3在研究气温和热茶销售杯数的关系时,若求得相关指数R20.85,则表明气温解释了_的热茶销售杯数变化,而随机误差贡献了剩余的_,所以气温对热茶销售杯数的效应比随机误差的效应大得多解析:由相关指数R2的意义可知,R20.85表明气温解释了85%,而随机误差贡献了剩余的1
15、5%.答案:85%15%4若施肥量x(kg)与小麦产量y(kg)之间的回归直线方程为2504x,当施肥量为50 kg时,预计小麦产量为_解析:把x50代入2504x,可求得450.答案:450 kg5某工厂为了对新研究的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价x(元)88.28.48.68.89销量y(件)908483807568(1)求回归直线方程x,其中20,;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润销售收入成本)解:(1)(88.28.48.68.89)8
16、.5,(908483807568)80,从而2080208.5250,故20x250.(2)由题意知,工厂获得利润z(x4)y20x2330x1 000202361.25,所以当x8.25时,zmax361.25(元)即当该产品的单价定为8.25元时,工厂获得最大利润12独立性检验的基本思想及其初步应用独立性检验的有关概念导入新知1分类变量变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量222列联表假设有两个分类变量X和Y,它们的取值分别为x1,x2和y1,y2,其样本频数列联表(也称22列联表)为:y1y2总计x1ababx2cdcd总计acbdabcd3等高条形图将列联表中
17、的数据用高度相同的两个条形图表示出来,其中两列的数据分别对应不同的颜色,这就是等高条形图4K2统计量为了使不同样本容量的数据有统一的评判标准,我们构造一个随机变量K2,其中nabcd为样本容量5独立性检验利用随机变量K2来确定是否能以给定把握认为“两个分类变量有关系”的方法,称为两个分类变量独立性检验化解疑难反证法原理与独立性检验原理的比较反证法原理在假设H0下,如果推出一个矛盾,就证明了H0不成立独立性检验原理在假设H0下,如果出现一个与H0相矛盾的小概率事件,就推断H0不成立,且该推断犯错误的概率不超过小概率.独立性检验的步骤独立性检验的具体做法(1)根据实际问题的需要确定容许推断“两个分
18、类变量有关系”犯错误概率的上界,然后查下表确定临界值k0.P(K2k0)0.500.400.250.150.10k00.4550.7081.3232.0722.706P(K2k0)0.050.0250.0100.0050.001k03.8415.0246.6357.87910.828(2)利用公式K2,计算随机变量K2的观测值k.(3)如果kk0,就推断“X与Y有关系”,这种推断犯错误的概率不超过;否则,就认为在犯错误的概率不超过的前提下不能推断“X与Y有关系”,或者在样本数据中没有发现足够证据支持结论“X与Y有关系”化解疑难详析独立性检验(1)通过列联表或观察等高条形图判断两个分类变量之间有
19、关系,属于直观判断,不足之处是不能给出推断“两个分类变量有关系”犯错误的概率,而独立性检验可以弥补这个不足(2)列联表中的数据是样本数据,它只是总体的代表,具有随机性,因此,需要用独立性检验的方法确认所得结论在多大程度上适用于总体列联表和等高条形图的应用例1某学校对高三学生作了一项调查,发现:在平时的模拟考试中,性格内向的学生426人中有332人在考前心情紧张,性格外向的学生594人中有213人在考前心情紧张作出等高条形图,利用图形判断考前心情紧张与性格类别是否有关系解作列联表如下:性格内向性格外向总计考前心情紧张332213545考前心情不紧张94381475总计4265941 020相应的
20、等高条形图如图所示:图中阴影部分表示考前心情紧张与考前心情不紧张中性格内向的比例从图中可以看出考前紧张的样本中性格内向占的比例比考前心情不紧张样本中性格内向占的比例高,可以认为考前紧张与性格类型有关类题通法细解等高条形图(1)绘制等高条形图时,列联表的行对应的是高度,两行的数据不相等,但对应的条形图的高度是相同的;两列的数据对应不同的颜色(2)等高条形图中有两个高度相同的矩形,每一个矩形中都有两种颜色,观察下方颜色区域的高度,如果两个高度相差比较明显,就判断两个分类变量之间有关系活学活用 为了研究子女吸烟与父母吸烟的关系,调查了一千多名青少年及其家长,数据如下:父母吸烟父母不吸烟总计子女吸烟2
21、3783320子女不吸烟6785221 200总计9156051 520利用等高条形图判断父母吸烟对子女吸烟是否有影响?解:等高条形图如下:由图形观察可以看出子女吸烟者中父母吸烟的比例要比子女不吸烟者中父母吸烟的比例高,因此可以在某种程度上认为“子女吸烟与父母吸烟有关系”.独立性检验的原理例2打鼾不仅影响别人休息,而且可能与患某种疾病有关下表是一次调查所得的数据:患心脏病未患心脏病总计每晚都打鼾30224254不打鼾241 3551 379总计541 5791 633根据列联表的独立性检验,能否在犯错误的概率不超过0.001的前提下认为每晚都打鼾与患心脏病有关系?解由列联表中的数据,得K2的观
22、测值为k68.03310.828.因此,在犯错误的概率不超过0.001的前提下,认为每晚都打鼾与患心脏病有关系类题通法解决独立性检验问题的思路解决一般的独立性检验问题,首先由题目所给的22列联表确定a,b,c,d,n的值,然后代入随机变量K2的计算公式求出观测值k,将k与临界值k0进行对比,确定有多大的把握认为“两个分类变量有关系”活学活用某生产线上,质量监督员甲在生产现场时,990件产品中有合格品982件,次品8件;不在生产现场时,510件产品中有合格品493件,次品17件能否在犯错误的概率不超过0.001的前提下认为质量监督员甲在不在生产现场与产品质量好坏有关系?解:根据题目所给数据得如下
23、22列联表:合格品次品总计甲在生产现场9828990甲不在生产现场49317510总计1 475251 500由列联表中的数据,得K2的观测值为k13.09710.828.因此,在犯错误的概率不超过0.001的前提下,认为质量监督员甲在不在生产现场与产品质量好坏有关系典例(12分)某工厂有工人1 000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人)现用分层抽样的方法(按A类、B类分两层)从该工厂的工人中抽取100名工人,调查他们的生产能力(此处生产能力指一天加工的零件数),结果如下表表1:A类工人生产能力的频数分布表生产能力分组110,120
24、)120,130)130,140)140,150)人数8x32表2:B类工人生产能力的频数分布表生产能力分组110,120)120,130)130,140)140,150)人数6y2718(1)确定x,y的值;(2)完成下面22列联表,并回答能否在犯错误的概率不超过0.001的前提下认为工人的生产能力与工人的类别有关系?生产能力分组工人类别110,130)130,150)总计A类工人B类工人总计附:K2,P(K2k0)0.0500.0100.001k03.8416.63510.828解题流程 (2)根据所给的数据可以完成列联表,如下表所示:生产能力 分组工人类别110,130)130,150)
25、总计A类工人20525B类工人304575总计5050100(6分)由列联表中的数据,得K2的观测值为活学活用电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性根据已知条件完成下面的22列联表,并据此资料你是否认为“体育迷”与性别有关?非体育迷体育迷总计男女总计附:P(K2k0)0.050.01k03.8416.635解:由频率分布直方图可知,在抽取的100名观众中,“体育迷”有25名,“
26、非体育迷”有75名,又已知100名观众中女性有55名,女“体育迷”有10名,所以男性有45名,男“体育迷”有15名,从而可完成22列联表,如下表:非体育迷体育迷总计男301545女451055总计7525100由22列联表中的数据,得K2的观测值为k3.030.因为3.0303.841,所以没有充分的证据表明“体育迷”与性别有关随堂即时演练1观察下列各图,其中两个分类变量x,y之间关系最强的是()解析:选D在四幅图中,D图中两个深色条的高相差最明显,说明两个分类变量之间关系最强,故选D.2下面是一个22列联表:y1y2总计x1a2173x222527总计b46则表中a,b处的值分别为()A94
27、,96B52,50C52,54 D54,52解析:选C由得3独立性检验所采用的思路是:要研究A,B两类型变量彼此相关,首先假设这两类变量彼此_在此假设下构造随机变量K2,如果K2的观测值较大,那么在一定程度上说明假设_答案:无关不成立4在吸烟与患肺病是否相关的判断中,有下面的说法:若K2的观测值k6.635,则在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;从独立性检验可知,在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系时,若某人吸烟,则他有99%的可能患有肺病;从独立性检验可知,在犯错误的概率不超过0.05的前提下,认为
28、吸烟与患肺病有关系时,是指有5%的可能性使得推断错误其中说法正确的是_解析:K2是检验吸烟与患肺病相关程度的量,是相关关系,而不是确定关系,是反映有关和无关的概率,故说法不正确;说法中对“确定容许推断犯错误概率的上界”理解错误;说法正确答案:5在一次天气恶劣的飞机航程中,调查了男女乘客在飞机上晕机的情况:男乘客晕机的有24人,不晕机的有31人;女乘客晕机的有8人,不晕机的有26人能否在犯错误的概率不超过0.10的前提下推断:在天气恶劣的飞机航程中,男乘客比女乘客更容易晕机?解:由已知条件得出下列22列联表:晕机不晕机总计男乘客243155女乘客82634总计325789由公式可得K2的观测值k
29、3.6892.706.故在犯错误的概率不超过0.10的前提下,认为“在天气恶劣的飞机航程中,男乘客比女乘客更容易晕机”第二章 推理与证明21.1合情推理归纳推理如图(甲)是第七届国际数学教育大会(简称ICME7)的会徽图案,会徽的主体图案是由如图(乙)的一连串直角三角形演化而成的,其中OA1A1A2A2A3A7A81,如果把图(乙)中的直角三角形依此规律继续作下去,记OA1,OA2,OAn的长度构成数列an,问题1:试计算a1,a2,a3,a4的值提示:由图知:a1OA11,a2OA2,a3OA3,a4OA42.问题2:由问题1中的结果,你能猜想出数列an的通项公式an吗?提示:能猜想出an(
30、nN*)问题3:直角三角形、等腰三角形、等边三角形的内角和都是180,你能猜想出什么结论?提示:所有三角形的内角和都是180.问题4:以上两个推理有什么共同特点?提示:都是由个别事实推出一般结论导入新知1归纳推理的定义由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理2归纳推理的特征归纳推理是由部分到整体、由个别到一般的推理化解疑难归纳推理的特点(1)由归纳推理得到的结论具有猜测的性质,结论是否正确,还需经过逻辑证明和实践检验,因此,归纳推理不能作为数学证明的工具;(2)一般地,如果归纳的个别对象越多,越具有代表性,那
31、么推广的一般性结论也就越可靠.类比推理提出问题问题1:在三角形中,任意两边之和大于第三边,那么,在四面体中,各个面的面积之间有什么关系?提示:四面体中任意三个面的面积之和大于第四个面的面积问题2:三角形的面积等于底边与高乘积的,那么在四面体中,如何表示四面体的体积?提示:四面体的体积等于底面积与高乘积的.问题3:以上两个推理有什么共同特点?提示:根据三角形的特征,推出四面体的特征问题4:以上两个推理是归纳推理吗?提示:不是归纳推理是从特殊到一般的推理,而以上两个推理是从特殊到特殊的推理导入新知1类比推理的定义由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的
32、推理,称为类比推理2类比推理的特征类比推理是由特殊到特殊的推理化解疑难对类比推理的定义的理解(1)类比推理是两类对象特征之间的推理(2)对象的各个性质之间并不是孤立存在的,而是相互联系和相互制约的,如果两个对象有些性质相似或相同,那么它们另一些性质也可能相似或相同(3)在数学中,我们可以由已经解决的问题和已经获得的知识出发,通过类比提出新问题和获得新发现数、式中的归纳推理例1已知数列an的前n项和为Sn,a1,且Sn2an(n2),计算S1,S2,S3,S4,并猜想Sn的表达式解当n1时,S1a1;当n2时,2S1,所以S2;当n3时,2S2,所以S3;当n4时,2S3,所以S4.猜想:Sn,
33、nN*.类题通法归纳推理的一般步骤归纳推理的思维过程大致是:实验、观察概括、推广猜测一般性结论该过程包括两个步骤:(1)通过观察个别对象发现某些相同性质;(2)从已知的相同性质中推出一个明确表述的一般性命题(猜想)活学活用将全体正整数排成一个三角形数阵:12345678910按照以上排列的规律,求第n行(n3)从左向右数第3个数解:前(n1)行共有正整数12(n1)个,即个,因此第n行第3个数是全体正整数中第个,即为.图形中的归纳推理例2(1)有两种花色的正六边形地面砖,按下图的规律拼成若干个图案,则第六个图案中有菱形纹的正六边形的个数是()A26B31C32 D36(2)把1,3,6,10,
34、15,21,这些数叫做三角形数,这是因为个数等于这些数目的点可以分别排成一个正三角形(如图),试求第七个三角形数是_解析(1)选B法一:有菱形纹的正六边形个数如下表:图案123个数61116由表可以看出有菱形纹的正六边形的个数依次组成一个以6为首项,以5为公差的等差数列,所以第六个图案中有菱形纹的正六边形的个数是65(61)31.法二:由图案的排列规律可知,除第一块无纹正六边形需6个有纹正六边形围绕(图案1)外,每增加一块无纹正六边形,只需增加5块菱形纹正六边形(每两块相邻的无纹正六边形之间有一块“公共”的菱形纹正六边形),故第六个图案中有菱形纹的正六边形的个数为:65(61)31.故选B.(
35、2)第七个三角形数为123456728.答案(1)B(2)28类题通法解决图形中归纳推理的方法解决与图形有关的归纳推理问题常从以下两个方面着手:(1)从图形的数量规律入手,找到数值变化与数量的关系(2)从图形的结构变化规律入手,找到图形的结构每发生一次变化后,与上一次比较,数值发生了怎样的变化活学活用如图,第n个图形是由正n2边形“扩展”而来(n1,2,3,),则第n个图形中的顶点个数为()A(n1)(n2)B(n2)(n3)Cn2 Dn解析:选B第一个图形共有1234个顶点,第二个图形共有2045个顶点,第三个图形共有3056个顶点,第四个图形共有4267个顶点,故第n个图形共有(n2)(n
36、3)个顶点.类比推理例3设等差数列an的前n项和为Sn,则S4,S8S4,S12S8,S16S12成等差数列,类比以上结论有:设等比数列bn的前n项积为Tn,则T4,_,_,成等比数列解析由于等差数列与等比数列具有类比性,且等差数列与和差有关,等比数列与积商有关,因此当等差数列依次每4项之和仍成等差数列时,类比等比数列为依次每4项的积的商成等比数列下面证明该结论的正确性:设等比数列bn的公比为q,首项为b1,则T4bq6,T8bq127bq28,T12bq1211bq66,T16bq1215bq120,bq22,bq38,bq54,即2T4,2,故T4,成等比数列答案类题通法类比推理的一般步骤
37、类比推理的思维过程大致是:观察、比较联想、类推猜测新的结论该过程包括两个步骤:(1)找出两类对象之间的相似性或一致性;(2)用一类对象的性质去猜测另一类对象的性质,得出一个明确的命题(猜想)活学活用已知椭圆具有以下性质:已知M,N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,若直线PM,PN的斜率都存在,并记为kPM,kPN,那么kPM与kPN之积是与点P的位置无关的定值试对双曲线1(a0,b0)写出类似的性质,并加以证明解:类似的性质为:已知M,N是双曲线1(a0,b0)上关于原点对称的两个点,点P是双曲线上任意一点,若直线PM,PN的斜率都存在,并记为kPM,kPN,那么kPM与k
38、PN之积是与点P的位置无关的定值证明如下:设点M,P的坐标为(m,n),(x,y),则N点的坐标为(m,n)点M(m,n)在已知双曲线1上,1,得n2m2b2,同理y2x2b2.y2n2(x2m2)则kPMkPN(定值)kPM与kPN之积是与点P的位置无关的定值典例三角形与四面体有下列相似性质:(1)三角形是平面内由直线段围成的最简单的封闭图形;四面体是空间中由三角形围成的最简单的封闭图形(2)三角形可以看作是由一条线段所在直线外一点与这条线段的两个端点的连线所围成的图形;四面体可以看作是由三角形所在平面外一点与这个三角形三个顶点的连线所围成的图形通过类比推理,根据三角形的性质推测空间四面体的
39、性质,并填写下表:三角形四面体三角形的两边之和大于第三边三角形的中位线的长等于第三边长的一半,且平行于第三边三角形的三条内角平分线交于一点,且这个点是三角形内切圆的圆心解三角形和四面体分别是平面图形和空间图形,三角形的边对应四面体的面,即平面的线类比到空间为面三角形的中位线对应四面体的中截面(以任意三条棱的中点为顶点的三角形),三角形的内角对应四面体的二面角,三角形的内切圆对应四面体的内切球具体见下表:三角形四面体三角形的两边之和大于第三边四面体的三个面的面积之和大于第四个面的面积三角形的中位线的长等于第三边长的一半,且平行于第三边四面体的中截面的面积等于第四个面的面积的,且平行于第四个面三角
40、形的三条内角平分线交于一点,且这个点是三角形内切圆的圆心四面体的六个二面角的平分面交于一点,且这个点是四面体内切球的球心多维探究1解决此类问题,从几何元素的数目、位置关系、度量等方面入手,将平面几何的相关结论类比到立体几何中,相关类比点如下:平面图形点线边长面积线线角三角形平行四边形圆空间图形线面面积体积二面角四面体六面体球2常见的从平面到空间的类比有以下几种情况,要注意掌握:(1)三角形类比到三棱锥:例:在平面几何里,有勾股定理:“设ABC的两边AB,AC互相垂直,则AB2AC2BC2”,拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面积与底面积间的关系,可以得出的正确结论是:“设三棱锥ABCD的三个侧面ABC,ACD,ADB两两相互垂直,则_”解析:“直角三角形的直角边长、斜边长”类比为“直角三棱锥