收藏 分销(赏)

Matlab软件包与Logistic回归学习资料.doc

上传人:精**** 文档编号:3733474 上传时间:2024-07-16 格式:DOC 页数:26 大小:348.50KB
下载 相关 举报
Matlab软件包与Logistic回归学习资料.doc_第1页
第1页 / 共26页
Matlab软件包与Logistic回归学习资料.doc_第2页
第2页 / 共26页
Matlab软件包与Logistic回归学习资料.doc_第3页
第3页 / 共26页
Matlab软件包与Logistic回归学习资料.doc_第4页
第4页 / 共26页
Matlab软件包与Logistic回归学习资料.doc_第5页
第5页 / 共26页
点击查看更多>>
资源描述

1、Matlab软件包与Logistic回归精品文档Matlab软件包与Logistic回归在回归分析中,因变量可能有两种情形:()是一个定量的变量,这时就用通常的regress函数对进行回归;()是一个定性的变量,比如,或,这时就不能用通常的regress函数对进行回归,而是使用所谓的Logistic回归。Logistic回归的基本思想是,不是直接对进行回归,而是先定义一种概率函数,令要求。此时,如果直接对进行回归,得到的回归方程可能不满足这个条件。在现实生活中,一般有。直接求的表达式,是比较困难的一件事,于是,人们改为考虑一般的,。人们经过研究发现,令即,是一个Logistic型的函数,效果比

2、较理想。于是,我们将其变形得到:然后,对进行通常的线性回归。例如,Logistic型概率函数的图形如下:ezplot(1/(1+300*exp(-2*x),0,10)例企业到金融商业机构贷款,金融商业机构需要对企业进行评估。例如,Moody公司就是New York的一家专门评估企业的贷款信誉的公司。设:下面列出美国66家企业的具体情况:Y X1 X2 X3 0 -62.8 -89.5 1.7 0 3.3 -3.5 1.1 0 -120.8 -103.2 2.5 0 -18.1 -28.8 1.1 0 -3.8 -50.6 0.9 0 -61.2 -56.2 1.7 0 -20.3 -17.4

3、1.0 0 -194.5 -25.8 0.5 0 20.8 -4.3 1.0 0 -106.1 -22.9 1.5 0 -39.4 -35.7 1.2 0 -164.1 -17.7 1.3 0 -308.9 -65.8 0.8 0 7.2 -22.6 2.0 0 -118.3 -34.2 1.5 0 -185.9 -280.0 6.7 0 -34.6 -19.4 3.4 0 -27.9 6.3 1.3 0 -48.2 6.8 1.6 0 -49.2 -17.2 0.3 0 -19.2 -36.7 0.8 0 -18.1 -6.5 0.9 0 -98.0 -20.8 1.7 0 -129.0 -

4、14.2 1.3 0 -4.0 -15.8 2.1 0 -8.7 -36.3 2.8 0 -59.2 -12.8 2.1 0 -13.1 -17.6 0.9 0 -38.0 1.6 1.2 0 -57.9 0.7 0.8 0 -8.8 -9.1 0.9 0 -64.7 -4.0 0.1 0 -11.4 4.8 0.9 1 43.0 16.4 1.3 1 47.0 16.0 1.9 1 -3.3 4.0 2.7 1 35.0 20.8 1.9 1 46.7 12.6 0.9 1 20.8 12.5 2.4 1 33.0 23.6 1.5 1 26.1 10.4 2.1 1 68.6 13.8 1

5、.6 1 37.3 33.4 3.5 1 59.0 23.1 5.5 1 49.6 23.8 1.9 1 12.5 7.0 1.8 1 37.3 34.1 1.5 1 35.3 4.2 0.9 1 49.5 25.1 2.6 1 18.1 13.5 4.0 1 31.4 15.7 1.9 1 21.5 -14.4 1.0 1 8.5 5.8 1.5 1 40.6 5.8 1.8 1 34.6 26.4 1.8 1 19.9 26.7 2.3 1 17.4 12.6 1.3 1 54.7 14.6 1.7 1 53.5 20.6 1.1 1 35.9 26.4 2.0 1 39.4 30.5 1

6、.9 1 53.1 7.1 1.9 1 39.8 13.8 1.2 1 59.5 7.0 2.0 1 16.3 20.4 1.0 1 21.7 -7.8 1.6 其中,建立破产特征变量的回归方程。解:在这个破产问题中,我们讨论,概率。设企业年后具备还款能力的概率,即, 企业不破产的概率。因为66个数据有33个为0,33个为1,所以,取分界值0.5,令由于我们并不知道企业在没有破产前概率的具体值,也不可能通过的数据把这个具体的概率值算出来,于是,为了方便做回归运算,我们取区间的中值,。数据表变为: X1 X2 X3 0.25 -62.8 -89.5 1.7 0.25 3.3 -3.5 1.1 0

7、.25-120.8 -103.2 2.5 0.25 -18.1 -28.8 1.1 0.25 -3.8 -50.6 0.9 0.25 -61.2 -56.2 1.7 0.25 -20.3 -17.4 1.0 0.25 -194.5 -25.8 0.5 0.25 20.8 -4.3 1.0 0.25 -106.1 -22.9 1.5 0.25 -39.4 -35.7 1.2 0.25 -164.1 -17.7 1.3 0.25 -308.9 -65.8 0.8 0.25 7.2 -22.6 2.0 0.25 -118.3 -34.2 1.5 0.25 -185.9 -280.0 6.7 0.25

8、 -34.6 -19.4 3.4 0.25 -27.9 6.3 1.3 0.25 -48.2 6.8 1.6 0.25 -49.2 -17.2 0.3 0.25 -19.2 -36.7 0.8 0.25 -18.1 -6.5 0.9 0.25 -98.0 -20.8 1.7 0.25 -129.0 -14.2 1.3 0.25 -4.0 -15.8 2.1 0.25 -8.7 -36.3 2.8 0.25 -59.2 -12.8 2.1 0.25 -13.1 -17.6 0.9 0.25 -38.0 1.6 1.2 0.25 -57.9 0.7 0.8 0.25 -8.8 -9.1 0.9 0

9、.25 -64.7 -4.0 0.1 0.25 -11.4 4.8 0.9 0.75 43.0 16.4 1.3 0.7547.0 16.0 1.9 0.75-3.3 4.0 2.7 0.7535.0 20.8 1.9 0.7546.7 12.6 0.9 0.7520.8 12.5 2.4 0.7533.0 23.6 1.5 0.7526.1 10.4 2.1 0.7568.6 13.8 1.6 0.7537.3 33.4 3.5 0.7559.0 23.1 5.5 0.7549.6 23.8 1.9 0.7512.5 7.0 1.8 0.7537.3 34.1 1.5 0.7535.3 4.

10、2 0.9 0.7549.5 25.1 2.6 0.7518.1 13.5 4.0 0.7531.4 15.7 1.9 0.7521.5 -14.4 1.0 0.758.5 5.8 1.5 0.7540.6 5.8 1.8 0.7534.6 26.4 1.8 0.7519.9 26.7 2.3 0.7517.4 12.6 1.3 0.7554.7 14.6 1.7 0.7553.5 20.6 1.1 0.7535.9 26.4 2.0 0.7539.4 30.5 1.9 0.7553.1 7.1 1.9 0.7539.8 13.8 1.2 0.7559.5 7.0 2.0 0.7516.3 2

11、0.4 1.0 0.7521.7 -7.8 1.6 于是,在Matlab软件包中编程如下,对进行通常的线性回归:X=1,-62.8,-89.5,1.7; 1,3.3,-3.5,1.1; 1,-120.8,-103.2,2.5; 1,-18.1,-28.8,1.1; 1,-3.8,-50.6,0.9; 1,-61.2,-56.2,1.7; 1,-20.3,-17.4,1; 1,-194.5,-25.8,0.5; 1,20.8,-4.3,1; 1,-106.1,-22.9,1.5; 1,-39.4,-35.7,1.2; 1,-164.1,-17.7,1.3; 1,-308.9,-65.8,0.8;

12、 1,7.2,-22.6,2.0; 1,-118.3,-34.2,1.5; 1,-185.9,-280,6.7; 1,-34.6,-19.4,3.4; 1,-27.9,6.3,1.3; 1,-48.2,6.8,1.6; 1,-49.2,-17.2,0.3; 1,-19.2,-36.7,0.8; 1,-18.1,-6.5,0.9; 1,-98,-20.8,1.7; 1,-129,-14.2,1.3; 1,-4,-15.8,2.1; 1,-8.7,-36.3,2.8; 1,-59.2,-12.8,2.1; 1,-13.1,-17.6,0.9; 1,-38,1.6,1.2; 1,-57.9,0.7,

13、0.8; 1,-8.8,-9.1,0.9; 1,-64.7,-4,0.1; 1,-11.4,4.8,0.9; 1,43,16.4,1.3; 1,47,16,1.9; 1,-3.3,4,2.7; 1,35,20.8,1.9; 1,46.7,12.6,0.9; 1,20.8,12.5,2.4; 1,33,23.6,1.5; 1,26.1,10.4,2.1; 1,68.6,13.8,1.6; 1,37.3,33.4,3.5; 1,59,23.1,5.5; 1,49.6,23.8,1.9; 1,12.5,7,1.8; 1,37.3,34.1,1.5; 1,35.3,4.2,0.9; 1,49.5,25

14、.1,2.6; 1,18.1,13.5,4; 1,31.4,15.7,1.9; 1,21.5,-14.4,1; 1,8.5,5.8,1.5; 1,40.6,5.8,1.8; 1,34.6,26.4,1.8; 1,19.9,26.7,2.3; 1,17.4,12.6,1.3; 1,54.7,14.6,1.7; 1,53.5,20.6,1.1; 1,35.9,26.4,2; 1,39.4,30.5,1.9; 1,53.1,7.1,1.9; 1,39.8,13.8,1.2; 1,59.5,7,2; 1,16.3,20.4,1; 1,21.7,-7.8,1.6;a0=0.25*ones(33,1);a

15、1=0.75*ones(33,1);y0=a0;a1;Y=log(1-y0)./y0);b,bint,r,rint,stats =regress(Y,X)rcoplot(r,rint)执行后得到结果:b = 0.3914 -0.0069 -0.0093 -0.3263bint = 0.0073 0.7755 -0.0105 -0.0032 -0.0156 -0.0030 -0.5253 -0.1273r = -0.0037 1.0561 -0.2683 0.6733 0.5028 0.3179 0.7320 -0.7044 1.1361 0.2553 0.4955 -0.1593 -1.764

16、3 1.1984 0.0662 -0.9937 1.3983 0.9988 0.9621 0.3072 0.4942 0.8161 0.3957 0.1141 1.2176 1.2225 0.8670 0.7468 0.8531 0.5777 0.8556 0.2588 0.9675 -0.6179 -0.3984 -0.5943 -0.4360 -0.7585 -0.4476 -0.5541 -0.5288 -0.3687 0.2194 0.9248 -0.3078 -0.7516 -0.4266 -0.9150 -0.0680 0.0653 -0.5082 -1.1506 -0.8882

17、-0.5701 -0.4191 -0.3540 -0.8289 -0.4239 -0.5720 -0.3449 -0.3153 -0.4396 -0.6967 -0.3640 -0.8616 -0.8919rint = -1.4320 1.4245 -0.3990 2.5113 -1.6975 1.1608 -0.7882 2.1349 -0.9222 1.9277 -1.1498 1.7856 -0.7332 2.1971 -2.0696 0.6609 -0.3070 2.5791 -1.2048 1.7154 -0.9730 1.9640 -1.5626 1.2441 -2.9063 -0

18、.6223 -0.2499 2.6466 -1.3925 1.5249 -1.7217 -0.2657 -0.0051 2.8018 -0.4609 2.4585 -0.4909 2.4152 -1.1505 1.7649 -0.9556 1.9439 -0.6477 2.2799 -1.0648 1.8562 -1.3238 1.5521 -0.2340 2.6692 -0.2162 2.6613 -0.5911 2.3250 -0.7136 2.2073 -0.6117 2.3178 -0.8868 2.0421 -0.6044 2.3156 -1.1944 1.7120 -0.4914

19、2.4264 -2.0862 0.8504 -1.8729 1.0760 -2.0558 0.8671 -1.9108 1.0389 -2.2125 0.6955 -1.9186 1.0234 -2.0271 0.9190 -2.0034 0.9459 -1.8340 1.0967 -1.1951 1.6340 -0.3186 2.1681 -1.7819 1.1662 -2.2238 0.7205 -1.8981 1.0449 -2.3643 0.5342 -1.5319 1.3959 -1.3378 1.4683 -1.9834 0.9669 -2.5850 0.2839 -2.3556

20、0.5793 -2.0422 0.9020 -1.8929 1.0547 -1.8195 1.1116 -2.2961 0.6383 -1.8955 1.0476 -2.0355 0.8916 -1.8178 1.1280 -1.7876 1.1571 -1.9105 1.0313 -2.1620 0.7686 -1.8335 1.1055 -2.3237 0.6005 -2.3544 0.5707stats = 0.5699 27.3841 0.0000 0.5526即,得到:值0.5699(说明回归方程刻画原问题不是太好),F_检验值27.38410.0000(这个值比较好),与显著性概率

21、相关的p值0.5526,说明变量之间存在线性相关关系。回归方程为:以及残差图:通过残差图看出,残差连续的出现在的上方,或者连续地出现在的下方,这也暗示变量之间存在线性相关。编程计算它们的相关系数:X=1,-62.8,-89.5,1.7; 1,3.3,-3.5,1.1; 1,-120.8,-103.2,2.5; 1,-18.1,-28.8,1.1; 1,-3.8,-50.6,0.9; 1,-61.2,-56.2,1.7; 1,-20.3,-17.4,1; 1,-194.5,-25.8,0.5; 1,20.8,-4.3,1; 1,-106.1,-22.9,1.5; 1,-39.4,-35.7,1.

22、2; 1,-164.1,-17.7,1.3; 1,-308.9,-65.8,0.8; 1,7.2,-22.6,2.0; 1,-118.3,-34.2,1.5; 1,-185.9,-280,6.7; 1,-34.6,-19.4,3.4; 1,-27.9,6.3,1.3; 1,-48.2,6.8,1.6; 1,-49.2,-17.2,0.3; 1,-19.2,-36.7,0.8; 1,-18.1,-6.5,0.9; 1,-98,-20.8,1.7; 1,-129,-14.2,1.3; 1,-4,-15.8,2.1; 1,-8.7,-36.3,2.8; 1,-59.2,-12.8,2.1; 1,-1

23、3.1,-17.6,0.9; 1,-38,1.6,1.2; 1,-57.9,0.7,0.8; 1,-8.8,-9.1,0.9; 1,-64.7,-4,0.1; 1,-11.4,4.8,0.9; 1,43,16.4,1.3; 1,47,16,1.9; 1,-3.3,4,2.7; 1,35,20.8,1.9; 1,46.7,12.6,0.9; 1,20.8,12.5,2.4; 1,33,23.6,1.5; 1,26.1,10.4,2.1; 1,68.6,13.8,1.6; 1,37.3,33.4,3.5; 1,59,23.1,5.5; 1,49.6,23.8,1.9; 1,12.5,7,1.8;

24、1,37.3,34.1,1.5; 1,35.3,4.2,0.9; 1,49.5,25.1,2.6; 1,18.1,13.5,4; 1,31.4,15.7,1.9; 1,21.5,-14.4,1; 1,8.5,5.8,1.5; 1,40.6,5.8,1.8; 1,34.6,26.4,1.8; 1,19.9,26.7,2.3; 1,17.4,12.6,1.3; 1,54.7,14.6,1.7; 1,53.5,20.6,1.1; 1,35.9,26.4,2; 1,39.4,30.5,1.9; 1,53.1,7.1,1.9; 1,39.8,13.8,1.2; 1,59.5,7,2; 1,16.3,20

25、.4,1; 1,21.7,-7.8,1.6;X1=X(:,2);X2=X(:,3);X3=X(:,4);corrcoef(X1,X2)corrcoef(X1,X3)corrcoef(X2,X3)执行后得到结果:ans = 1.0000 0.6409 0.6409 1.0000ans = 1.0000 0.0467 0.0467 1.0000ans = 1.0000 -0.3501 -0.3501 1.0000可见corrcoef(X1,X2)0.64,这说明,在做回归时,可以去掉列。根据经济意义,我们去掉列,再进行回归。X=1,-62.8,-89.5,1.7; 1,3.3,-3.5,1.1;

26、1,-120.8,-103.2,2.5; 1,-18.1,-28.8,1.1; 1,-3.8,-50.6,0.9; 1,-61.2,-56.2,1.7; 1,-20.3,-17.4,1; 1,-194.5,-25.8,0.5; 1,20.8,-4.3,1; 1,-106.1,-22.9,1.5; 1,-39.4,-35.7,1.2; 1,-164.1,-17.7,1.3; 1,-308.9,-65.8,0.8; 1,7.2,-22.6,2.0; 1,-118.3,-34.2,1.5; 1,-185.9,-280,6.7; 1,-34.6,-19.4,3.4; 1,-27.9,6.3,1.3;

27、1,-48.2,6.8,1.6; 1,-49.2,-17.2,0.3; 1,-19.2,-36.7,0.8; 1,-18.1,-6.5,0.9; 1,-98,-20.8,1.7; 1,-129,-14.2,1.3; 1,-4,-15.8,2.1; 1,-8.7,-36.3,2.8; 1,-59.2,-12.8,2.1; 1,-13.1,-17.6,0.9; 1,-38,1.6,1.2; 1,-57.9,0.7,0.8; 1,-8.8,-9.1,0.9; 1,-64.7,-4,0.1; 1,-11.4,4.8,0.9; 1,43,16.4,1.3; 1,47,16,1.9; 1,-3.3,4,2

28、.7; 1,35,20.8,1.9; 1,46.7,12.6,0.9; 1,20.8,12.5,2.4; 1,33,23.6,1.5; 1,26.1,10.4,2.1; 1,68.6,13.8,1.6; 1,37.3,33.4,3.5; 1,59,23.1,5.5; 1,49.6,23.8,1.9; 1,12.5,7,1.8; 1,37.3,34.1,1.5; 1,35.3,4.2,0.9; 1,49.5,25.1,2.6; 1,18.1,13.5,4; 1,31.4,15.7,1.9; 1,21.5,-14.4,1; 1,8.5,5.8,1.5; 1,40.6,5.8,1.8; 1,34.6

29、,26.4,1.8; 1,19.9,26.7,2.3; 1,17.4,12.6,1.3; 1,54.7,14.6,1.7; 1,53.5,20.6,1.1; 1,35.9,26.4,2; 1,39.4,30.5,1.9; 1,53.1,7.1,1.9; 1,39.8,13.8,1.2; 1,59.5,7,2; 1,16.3,20.4,1; 1,21.7,-7.8,1.6;a0=0.25*ones(33,1);a1=0.75*ones(33,1);y0=a0;a1;Y=log(1-y0)./y0);X1=X(:,2);X2=X(:,3);X3=X(:,4);E=ones(66,1);B=E,X2

30、,X3;b,bint,r,rint,stats =regress(Y,B)rcoplot(r,rint)执行后得到:b = 0.6594 -0.0177 -0.4676bint = 0.2672 1.0516 -0.0226 -0.0127 -0.6702 -0.2649r = -0.3478 0.8917 -0.2159 0.4445 -0.0343 0.2408 0.5992 0.2170 0.8308 0.7358 0.3693 0.7342 -0.3497 0.9749 0.5361 -1.3769 1.6861 1.1584 1.3075 0.2755 0.1646 0.7451 0

31、.8665 0.7961 1.1419 1.1068 1.1949 0.5489 1.0286 0.8256 0.6992 0.4153 0.9449 -0.8603 -0.5868 -0.4249 -0.5020 -1.1145 -0.4149 -0.6395 -0.5923 -0.7660 0.4688 1.2219 -0.4490 -0.7927 -0.4540 -1.2630 -0.0987 0.3509 -0.5921 -1.5450 -0.9541 -0.8139 -0.4498 -0.2107 -0.9275 -0.7051 -0.8796 -0.3563 -0.3306 -0.

32、7441 -0.9530 -0.6992 -0.9299 -1.1478rint = -1.9280 1.2325 -0.7220 2.5054 -1.7877 1.3560 -1.1746 2.0636 -1.6382 1.5696 -1.3743 1.8558 -1.0189 2.2173 -1.3898 1.8237 -0.7833 2.4449 -0.8845 2.3561 -1.2496 1.9882 -0.8853 2.3537 -1.9330 1.2335 -0.6385 2.5883 -1.0852 2.1574 -2.1813 -0.5724 0.1435 3.2286 -0

33、.4463 2.7631 -0.2909 2.9059 -1.3275 1.8785 -1.4460 1.7752 -0.8695 2.3597 -0.7514 2.4843 -0.8222 2.4144 -0.4645 2.7482 -0.4883 2.7020 -0.4091 2.7988 -1.0680 2.1659 -0.5813 2.6384 -0.7851 2.4364 -0.9163 2.3146 -1.1827 2.0132 -0.6638 2.5535 -2.4750 0.7543 -2.2082 1.0345 -2.0392 1.1894 -2.1230 1.1190 -2

34、.7155 0.4865 -2.0332 1.2034 -2.2586 0.9795 -2.2133 1.0287 -2.3850 0.8531 -1.0894 2.0270 -0.1453 2.5892 -2.0695 1.1715 -2.4121 0.8268 -2.0716 1.1637 -2.8575 0.3315 -1.7076 1.5102 -1.1978 1.8995 -2.2135 1.0292 -3.1230 0.0331 -2.5686 0.6603 -2.4329 0.8052 -2.0699 1.1704 -1.8258 1.4044 -2.5407 0.6858 -2

35、.3254 0.9152 -2.4908 0.7316 -1.9755 1.2629 -1.9490 1.2879 -2.3644 0.8761 -2.5643 0.6582 -2.3198 0.9215 -2.5383 0.6785 -2.7554 0.4598stats = 0.4716 28.1175 0.0000 0.6681以及残差图:残差图仍然显示变量之间的相关性,这说明,最开始调查数据时,个指标没有选好。最后得到:将企业的具体数据代入的表达式计算,再结合金融机构就可以知道,是否应该贷款给这家企业。注:一个通常的Regress回归,可以用等参数评价回归结果的好坏,但对Logisti

36、c回归来说,不存在这样简单而令人满意的评价参数,所以,一般应该进行回归诊断。Logistic回归的诊断 所谓的回归诊断,就是将的原始数据代入求得的回归方程中,计算值,看看有多少个由回归方程计算所得的值与原始的值不同,因而判断回归方程的好坏。(1)用回归方程进行诊断。在Matlab软件包中,编程诊断X=1,-62.8,-89.5,1.7; 1,3.3,-3.5,1.1; 1,-120.8,-103.2,2.5; 1,-18.1,-28.8,1.1; 1,-3.8,-50.6,0.9; 1,-61.2,-56.2,1.7; 1,-20.3,-17.4,1; 1,-194.5,-25.8,0.5;

37、1,20.8,-4.3,1; 1,-106.1,-22.9,1.5; 1,-39.4,-35.7,1.2; 1,-164.1,-17.7,1.3; 1,-308.9,-65.8,0.8; 1,7.2,-22.6,2.0; 1,-118.3,-34.2,1.5; 1,-185.9,-280,6.7; 1,-34.6,-19.4,3.4; 1,-27.9,6.3,1.3; 1,-48.2,6.8,1.6; 1,-49.2,-17.2,0.3; 1,-19.2,-36.7,0.8; 1,-18.1,-6.5,0.9; 1,-98,-20.8,1.7; 1,-129,-14.2,1.3; 1,-4,-

38、15.8,2.1; 1,-8.7,-36.3,2.8; 1,-59.2,-12.8,2.1; 1,-13.1,-17.6,0.9; 1,-38,1.6,1.2; 1,-57.9,0.7,0.8; 1,-8.8,-9.1,0.9; 1,-64.7,-4,0.1; 1,-11.4,4.8,0.9; 1,43,16.4,1.3; 1,47,16,1.9; 1,-3.3,4,2.7; 1,35,20.8,1.9; 1,46.7,12.6,0.9; 1,20.8,12.5,2.4; 1,33,23.6,1.5; 1,26.1,10.4,2.1; 1,68.6,13.8,1.6; 1,37.3,33.4,3.5; 1,59,23.1,5.5; 1,49.6,23.8,1.9; 1,12.5,7,1.8; 1,37.3,34.1,1.5; 1,35.3,4.

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服