收藏 分销(赏)

北师大版八年级上册数学全册教案电子教案.doc

上传人:精**** 文档编号:3684508 上传时间:2024-07-13 格式:DOC 页数:154 大小:9.25MB
下载 相关 举报
北师大版八年级上册数学全册教案电子教案.doc_第1页
第1页 / 共154页
北师大版八年级上册数学全册教案电子教案.doc_第2页
第2页 / 共154页
北师大版八年级上册数学全册教案电子教案.doc_第3页
第3页 / 共154页
北师大版八年级上册数学全册教案电子教案.doc_第4页
第4页 / 共154页
北师大版八年级上册数学全册教案电子教案.doc_第5页
第5页 / 共154页
点击查看更多>>
资源描述

1、备课教案学 校:将乐县第四中学备课人:陈流财班 级:八(4)2016年9月八年级数学上册教学计划一、学情分析八年级是初中学习过程中的关键时期,在我们班上,两极分化问题很是严重,对优等生来说他们能够理解知识形成技能具备一定的数学能力,而对后进生来说简单的基础知识还不能够掌握成绩不容乐观。为使学生学好进一步学习所必需的代数、几何的基础知识与基本技能,进一步培养学生运算能力、发展思维能力和空间观念,使学生能够运用所学知识解决实际问题,逐步形成数学创新意识,作为教师,我将实行因材施教策略。二、教材内容分析 本学期数学内容包括第一章勾股定理、第二章实数,第三章图形的平移与旋转,第四章四边形性质探索,第五

2、章位置的确定,第六章一次函数, 第七章二元一次方程组,第八章数据的代表。 第一章勾股定理的主要内容是勾股定理的探索和应用。第二章实数主要内容是平方根、立方根的概念和求法,实数的概念和运算。本章的内容虽然不多,但在初中数学中占有十分重要的地位。 第三章图形的平移与旋转主要内容是生活中一些简单几何图形的平移和旋转。 第四章四边形性质探索的主要内容是四边形的有关概念、几种特殊的四边形(平行四边形、矩形、菱形、正方形、梯形)的性质和判定以及三角形、梯形的中位线。 第五章位置的确定主要讲述平面直角坐标系中点的确定,会找出一些点的坐标。 第六章一次函数的主要内容是介绍函数的概念,以及一次函数的图像和表达式

3、,学会用一次函数解决一些实际问题。 第七章二元一次方程组要求学会解二元一次方程组,并用二元一次方程组来解一些实际的问题。 第八章数据的代表主要讲述平均数和中位数、众数的概念,会求平均数和能找出中位数及众数。 三、教学目标要求 上半学期完成第一章到第四章第四节,下半学期完成第四章第五节到本册教材结束。掌握平方根与立方根、实数、平面坐标系、一次函数、勾股定理、四边形性质等知识并形成相应数学技能。在情感与价值观上认识图形中的数量关系,培养学生的实事求是认真严肃的学习态度,在民主和谐合作的学习过程中养成独立探究勤与思考大胆创新,发展学生的非智力因素提高学生的数学素质与素养。具体教学目标如下:1. 正确

4、理解二次根式的概念,掌握二次根式的基本运算,并能熟练地进行二次根式的化简。 2. 掌握二次根式加、减、乘、除的运算法则,能够进行二次根式的运算。掌握二次根式 的化简,进一步提高学生的运算能力。 3. 理解四边形及有关概念,掌握几种特殊四边形的性质定理及判定。4. 理解相似一次函数的概念,掌握一次函数的图像和表达式,学会用一次函数解决一些实际问题。 四、教材的重点和难点重点:勾股定理探索、四边形性质的探索、实数的概念、一次函数图象及其应用、二元一次方程组及其应用。难点:勾股定理探索、四边形性质的掌握一次函数图象及其应用的数形结合技能、二元一次方程组及其应用能力培养。五、本学期提高教学质量的主要措

5、施:1、认真做好教学工作。把认真教学作为提高成绩的主要方法,认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习。2、兴趣是最好的老师,爱因斯坦如是说。激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。3、引导学生积极参加知识的构建,营造民主、和谐、平等、自主、探索、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写小论文,写复习提纲,使知识来源于学生的创造。4、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提

6、高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。5、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。6、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。7、开展分层教学,布置作业设置A、B、C三类分层布置分别适合于差、中、好三类学生,课堂上的提问照顾好好、中、差三类学生,让每个学生尽可能获得最大发展。六、教学进度安排教学进度表周次起止时间教材内容及备注节数备注19.39.91.1探索勾股定理(2)1.2能得到直角三角

7、形(1)1.3蚂蚁怎样爬最近(1)回顾与思考(1)529.109.16第一章测试讲解(1)2.1数怎么不够用了(2)2.2平方根(2)5教师节39.179.232.3立方根(1)2.4公园有多宽(1)2.5用计算机开方(1)26实数(1)2.7回顾与思考(1)549.249.303.1生活中的平移(0.5)3.2简单的平移作图(0.5)3.3生活中的旋转(0.5)3.4简单的旋转作图(0.5)3.5它们是怎样变过来的(0.5) 3.6简单的图案设计(0.5) 复习与第三章测试(2)5510.110.7国 庆 节国庆节610.810.14前三章小复习与题目讲解(1)4.1平形四边形的性质(2)4

8、.2平形四边形的判别(2)5710.1510.214.3菱形(1)4.4矩形、正方形 (1)4.5梯形 (1)4.6探索多边形的内角和与外角和 (1)4.7中心对称图形 (1)5810.2210.28期中复习5910.2911.4期中考试及试题讲解51011.511.115.1确定位置 (1)5.2平面直角坐标系 (1)5.3变化的“鱼” (2)回顾与反思(1)51111.1211.186.1函数 (1)6.2一次函数的图象 (2)6.3一次函数的图象 (2)51211.1911.256.4确定一次函数表达式 (1)6.5一次函数图象的应用 (2)回顾与思考、复习与测试51311.2612.2

9、7.1谁的包裹多 (1)7.2解二元一 次方程组 (2)7.3鸡兔同笼 (2)51412.312.97.4增收节支 (2)7.5里程碑上的数 (1)7.6二元一次方程与一次函数 (2)51512.1012.168.1平均数 (2)8.2中位数与众数 (2)8.3利用计数器求平均数 (1)51612.1712.23总复习151712.2412.30总复习251812.311.6总复习35191.71.13总复习45201.141.120总复习5及期末考试5以上计划从制定之日起执行,若有不妥之处,请学校教务处给予指正,并督促执行第一章 勾股定理1.1 探索勾股定理(一)教学目标:1、 经历用数格子

10、的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。2、 探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。重点难点:重点:了解勾股定理的由来,并能用它来解决一些简单的问题。难点:勾股定理的发现教学过程一、 创设问题的情境,激发学生的学习热情,导入课题出示投影1 (章前的图文 p1)教师道白:介绍我国古代在勾股定理研究方面的贡献,并结合课本p5谈一谈,讲述我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。出示投影2 (书中的P2 图12)并回答:1、 观察图1-

11、2,正方形A中有_个小方格,即A的面积为_个单位。正方形B中有_个小方格,即A的面积为_个单位。正方形C中有_个小方格,即A的面积为_个单位。2、 你是怎样得出上面的结果的?在学生交流回答的基础上教师直接发问:3、 图12中,A,B,C 之间的面积之间有什么关系?学生交流后形成共识,教师板书,A+B=C,接着提出图11中的A.B,C 的关系呢?二、 做一做出示投影3(书中P3图14)提问:1、图13中,A,B,C 之间有什么关系?2、图14中,A,B,C 之间有什么关系?3、 从图11,12,13,1|4中你发现什么?学生讨论、交流形成共识后,教师总结:以三角形两直角边为边的正方形的面积和,等

12、于以斜边的正方形面积。三、 议一议1、 图11、12、13、14中,你能用三角形的边长表示正方形的面积吗?2、 你能发现直角三角形三边长度之间的关系吗?在同学的交流基础上,老师板书:直角三角形边的两直角边的平方和等于斜边的平方。这就是著名的“勾股定理”也就是说:如果直角三角形的两直角边为a,b,斜边为c那么我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。3、 分别以5厘米和12厘米为直角边做出一个直角三角形,并测量斜边的长度(学生测量后回答斜边长为13)请大家想一想(2)中的规律,对这个三角形仍然成立吗?(回答是肯定的:成立)四、 想一想这里的29英寸(74

13、厘米)的电视机,指的是屏幕的长吗?只的是屏幕的款吗?那他指什么呢?五、 巩固练习1、 错例辨析:ABC的两边为3和4,求第三边解:由于三角形的两边为3、4所以它的第三边的c应满足=25即:c=5辨析:(1)要用勾股定理解题,首先应具备直角三角形这个必不可少的条件,可本题 ABC并未说明它是否是直角三角形,所以用勾股定理就没有依据。(2)若告诉ABC是直角三角形,第三边C也不一定是满足,题目中并为交待C 是斜边综上所述这个题目条件不足,第三边无法求得。2、 练习P7 1.1 1六、 作业课本P7 1.1 2、3、41.1 探索勾股定理(二) 教学目标:1 经历运用拼图的方法说明勾股定理是正确的过

14、程,在数学活动中发展学生的探究意识和合作交流的习惯。2 掌握勾股定理和他的简单应用重点难点:重点: 能熟练运用拼图的方法证明勾股定理难点:用面积证勾股定理教学过程七、 创设问题的情境,激发学生的学习热情,导入课题我们已经通过数格子的方法发现了直角三角形三边的关系,究竟是几个实例,是否具有普遍的意义,还需加以论证,下面就是今天所要研究的内容,下边请大家画四个全等的直角三角形,并把它剪下来,用这四个直角三角形,拼一拼、摆一摆,看看能否得到一个含有以斜边c为边长的正方形,并与同学交流。在同学操作的过程中,教师展示投影1(书中p7 图17)接着提问:大正方形的面积可表示为什么?(同学们回答有这几种可能

15、:(1) (2) )在同学交流形成共识之后,教师把这两种表示大正方形面积的式子用等号连接起来。= 请同学们对上面的式子进行化简,得到: 即 = 这就可以从理论上说明勾股定理存在。请同学们去用别的拼图方法说明勾股定理。八、 讲例1. 飞机在空中水平飞行,某一时刻刚好飞机飞到一个男孩头顶正上方4000多米处,过20秒,飞机距离这个男孩头顶5000米,飞机每时飞行多少千米?分析:根据题意:可以先画出符合题意的图形。如右图,图中ABC的米,AB=5000米,欲求飞机每小时飞行多少千米,就要知道飞机在20秒的时间里的飞行路程,即图中的CB的长,由于直角ABC的斜边AB=5000米,AC=4000米,这样

16、的CB就可以通过勾股定理得出。这里一定要注意单位的换算。解:由勾股定理得 即BC=3千米 飞机20秒飞行3千米,那么它1小时飞行的距离为:答:飞机每个小时飞行540千米。九、 议一议展示投影2(书中的图19)观察上图,应用数格子的方法判断图中的三角形的三边长是否满足同学在议论交流形成共识之后,老师总结。勾股定理存在于直角三角形中,不是直角三角形就不能使用勾股定理。十、 作业1、 1、课文 P111.2 1 、22、 选用作业。12 能得到直角三角形吗教学目标:知识与技能1.掌握直角三角形的判别条件,并能进行简单应用; 2.进一步发展数感,增加对勾股数的直观体验,培养从实际问题抽象出数学问题的能

17、力,建立数学模型3.会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论情感态度与价值观敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识教学重点运用身边熟悉的事物,从多种角度发展数感,会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论教学难点会辨析哪些问题应用哪个结论课前准备标有单位长度的细绳、三角板、量角器、题篇教学过程:复习引入:请学生复述勾股定理;使用勾股定理的前提条件是什么?已知ABC的两边AB=5,AC=12,则BC=13对吗?创设问题情景:

18、由课前准备好的一组学生以小品的形式演示教材第9页古埃及造直角的方法这样做得到的是一个直角三角形吗? 提出课题:能得到直角三角形吗讲授新课:如何来判断?(用直角三角板检验)这个三角形的三边分别是多少?(一份视为1)它们之间存在着怎样的关系?就是说,如果三角形的三边为,请猜想在什么条件下,以这三边组成的三角形是直角三角形?(当满足较小两边的平方和等于较大边的平方时)继续尝试:下面的三组数分别是一个三角形的三边长a,b,c:5,12,13; 6,8, 10; 8,15,17.(1)这三组数都满足a2 +b2=c2吗?(2)分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?直角三角

19、形判定定理:如果三角形的三边长a,b,c满足a2 +b2=c2 ,那么这个三角形是直角三角形满足a2 +b2=c2的三个正整数,称为勾股数 例1 一个零件的形状如左图所示,按规定这个零件中A和DBC都应为直角工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗? 随堂练习:下列几组数能否作为直角三角形的三边长?说说你的理由9,12,15;15,36,39;12,35,36;12,18,22已知ABC中BC=41, AC=40, AB=9, 则此三角形为_三角形, _是最大角.四边形ABCD中已知AB=3,BC=4,CD=12,DA=13,且ABC=900,求这个四边形的面积习题1.3课堂

20、小结:直角三角形判定定理:如果三角形的三边长a,b,c满足a2 +b2=c2 ,那么这个三角形是直角三角形满足a2 +b2=c2的三个正整数,称为勾股数勾股数扩大相同倍数后,仍为勾股数1.3.蚂蚁怎样走最近教学目标教学知识点:能运用勾股定理及直角三角形的判别条件(即勾股定理的逆定理)解决简单的实际问题.能力训练要求:1.学会观察图形,勇于探索图形间的关系,培养学生的空间观念.2.在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.情感与价值观要求:1.通过有趣的问题提高学习数学的兴趣.2.在解决实际问题的过程中,体验数学学习的实用性,体现人人都学有用的数学.教学

21、重点难点:重点:探索、发现给定事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题.难点:利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题.教学过程1、创设问题情境,引入新课:前几节课我们学习了勾股定理,你还记得它有什么作用吗?例如:欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需多长的梯子?根据题意,(如图)AC是建筑物,则AC=12米,BC=5米,AB是梯子的长度.所以在RtABC中,AB2=AC2+BC2=122+52=132;AB=13米.所以至少需13米长的梯子.2、讲授新课:、蚂蚁怎么走最近 出示问题:有一个圆柱,它的高等于12厘米,底面

22、半径等于3厘米在圆行柱的底面A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,需要爬行的的最短路程是多少?(的值取3) (1)同学们可自己做一个圆柱,尝试从A点到B点沿圆柱的侧面画出几条路线,你觉得哪条路线最短呢?(小组讨论)(2)如图,将圆柱侧面剪开展开成一个长方形,从A点到B 点的最短路线是什么?你画对了吗?(3)蚂蚁从A点出发,想吃到B点上的食物,它沿圆柱侧面爬行的最短路程是多少?(学生分组讨论,公布结果)我们知道,圆柱的侧面展开图是一长方形.好了,现在咱们就用剪刀沿母线AA将圆柱的侧面展开(如下图).我们不难发现,刚才几位同学的走法:(1)AAB; (2)ABB;(3)ADB;

23、 (4)AB.哪条路线是最短呢?你画对了吗?第(4)条路线最短.因为“两点之间的连线中线段最短”.、做一做:教材14页。李叔叔随身只带卷尺检测AD,BC是否与底边AB垂直,也就是要检测 DAB=90,CBA=90.连结BD或AC,也就是要检测DAB和CBA是否为直角三角形.很显然,这是一个需用勾股定理的逆定理来解决的实际问题.、随堂练习出示投影片1.甲、乙两位探险者,到沙漠进行探险.某日早晨800甲先出发,他以6千米/时的速度向东行走.1时后乙出发,他以5千米/时的速度向北行进.上午1000,甲、乙两人相距多远?2.如图,有一个高1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中

24、插入一铁棒,已知铁棒在油桶外的部分是0.5米,问这根铁棒应有多长?1.分析:首先我们需要根据题意将实际问题转化成数学模型.解:(如图)根据题意,可知A是甲、乙的出发点,1000时甲到达B点,则AB=26=12(千米);乙到达C点,则AC=15=5(千米).在RtABC中,BC2=AC2+AB2=52+122=169=132,所以BC=13千米.即甲、乙两人相距13千米.2.分析:从题意可知,没有告诉铁棒是如何插入油桶中,因而铁棒的长是一个取值范围而不是固定的长度,所以铁棒最长时,是插入至底部的A点处,铁棒最短时是垂直于底面时.解:设伸入油桶中的长度为x米,则应求最长时和最短时的值.(1)x2=

25、1.52+22,x2=6.25,x=2.5所以最长是2.5+0.5=3(米).(2)x=1.5,最短是1.5+0.5=2(米).答:这根铁棒的长应在23米之间(包含2米、3米).3.试一试(课本P15)在我国古代数学著作九章算术中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各为多少?我们可以将这个实际问题转化成数学模型.解:如图,设水深为x尺,则芦苇长为(x+1)尺,由勾股定理可求得(x+1)2=x2+52,x2+2x+

26、1=x2+25解得x=12则水池的深度为12尺,芦苇长13尺.、课时小结这节课我们利用勾股定理和它的逆定理解决了生活中的几个实际问题.我们从中可以发现用数学知识解决这些实际问题,更为重要的是将它们转化成数学模型.、课后作业课本P25、习题1.5 22.1 实数的认识(一)教学目标(一)知识目标:1.通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性.2.能判断给出的数是否为有理数;并能说出现由.(二)能力训练目标:1.让学生亲自动手做拼图活动,感受无理数存在的必要性和合理性,培养大家的动手能力和合作精神.2.通过回顾有理数的有关知识,能正确地进行推理和判断,识别某些数是否为有理数,训练

27、他们的思维判断能力.(三)情感与价值观目标:1.激励学生积极参与教学活动,提高大家学习数学的热情.2.引导学生充分进行交流,讨论与探索等教学活动,培养他们的合作与钻研精神.3.了解有关无理数发现的知识,鼓励学生大胆质疑,培养他们为真理而奋斗的精神.教学重点1.让学生经历无理数发现的过程.感知生活中确实存在着不同于有理数的数.2.会判断一个数是否为有理数.教学难点1.把两个边长为1的正方形拼成一个大正方形的动手操作过程.2.判断一个数是否为有理数.教学方法教师引导,主要由学生分组讨论得出结果.教学过程一、创设问题情境,引入新课师同学们,我们学过不计其数的数,概括起来我们都学过哪些数呢?生在小学我

28、们学过自然数、小数、分数.生在初一我们还学过负数.师对,我们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数、零扩充到有理数范围,有理数包括整数和分数,那么有理数范围是否就能满足我们实际生活的需要呢?下面我们就来共同研究这个问题.二、讲授新课1.问题的提出师请大家四个人为一组,拿出自己准备好的两个边长为1的正方形和剪刀,认真讨论之后,动手剪一剪,拼一拼,设法得到一个大的正方形,好吗?生好.(学生非常高兴地投入活动中).师经过大家的共同努力,每个小组都完成了任务,请各组把拼的图展示一下.同学们非常踊跃地呈现自己的作品给老师.师现在我们一齐把大家的做法总结一下:下面请大家思

29、考一个问题,假设拼成大正方形的边长为a,则a应满足什么条件呢?生甲a是正方形的边长,所以a肯定是正数.生乙因为两个小正方形面积之和等于大正方形面积,所以根据正方形面积公式可知a2=2.生丙由a2=2可判断a应是1点几.师大家说得都有道理,前面我们已经总结了有理数包括整数和分数,那么a是整数吗?a是分数吗?请大家分组讨论后回答.生甲我们组的结论是:因为12=1,22=4,32=9,整数的平方越来越大,所以a应在1和2之间,故a不可能是整数.生乙因为,两个相同因数的乘积都为分数,所以a不可能是分数.师经过大家的讨论可知,在等式a2=2中,a既不是整数,也不是分数,所以a不是有理数,但在现实生活中确

30、实存在像a这样的数,由此看来,数又不够用了.2.做一做投影片2.1.1 A(1)在下图中,以直角三角形的斜边为边的正方形的面积是多少?(2)设该正方形的边长为b,则b应满足什么条件?b是有理数吗?师请大家先回忆一下勾股定理的内容.生在直角三角形中,若两条直角边长为a,b,斜边为c,则有a2+b2=c2.师在这题中,两条直角边分别为1和2,斜边为b,根据勾股定理得b2=12+22,即b2=5,则b是有理数吗?请举手回答.生甲因为22=4,32=9,459,所以b不可能是整数.生乙没有两个相同的分数相乘得5,故b不可能是分数.生丙因为没有一个整数或分数的平方为5,所以5不是有理数.师大家分析得很准

31、确,像上面讨论的数a,b都不是有理数,而是另一类数无理数.关于无理数的发现是付出了昂贵的代价的.早在公元前,古希腊数学家毕达哥拉斯认为万物皆“数”,即“宇宙间的一切现象都能归结为整数或整数之比”,也就是一切现象都可用有理数去描述.后来,这个学派中的一个叫希伯索斯的成员发现边长为1的正方形的对角线的长不能用整数或整数之比来表示,这个发现动摇了毕达哥拉斯学派的信条,据说为此希伯索斯被投进了大海,他为真理而献出了宝贵的生命,但真理是不可战胜的,后来古希腊人终于正视了希伯索斯的发现.也就是我们前面谈过的a2=2中的a不是有理数.我们现在所学的知识都是前人给我们总结出来的,我们一方面应积极地学习这些经验

32、,另一方面我们也不能死搬教条,要大胆质疑,如不这样科学就会永远停留在某处而不前进,要向古希腊的希伯索斯学习,学习他为捍卫真理而勇于献身的精神.三、课堂练习(一)课本P35随堂练习如图,正三角形ABC的边长为2,高为h,h可能是整数吗?可能是分数吗?解:由正三角形的性质可知BD=1,在RtABD中,由勾股定理得h2=3.h不可能是整数,也不可能是分数.(二)补充练习为了加固一个高2米、宽1米的大门,需要在对角线位置加固一条木板,设木板长为a米,则由勾股定理得a2=12+22,即a2=5,a的值大约是多少?这个值可能是分数吗?解:a的值大约是2.2,这个值不可能是分数.四、课堂小结1.通过拼图活动

33、,经历无理数产生的实际背景,让学生感受有理数又不够用了.2.能判断一个数是否为有理数.五、课后作业:见作业本。2.1实数的认识(二)教学目标(一) 知识目标:1.借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想.2.会判断一个数是有理数还是无理数.(二)能力训练目标:1.借助计算器进行估算,培养学生的估算能力,发展学生的抽象概括能力,并在活动中进一步发展学生独立思考、合作交流的意识和能力.2.探索无理数的定义,以及无理数与有理数的区别,并能辨别出一个数是无理数还是有理数,训练大家的思维判断能力.(三)情感与价值观目标:1.让学生理解估算的意义,掌握估算的方法,发展学生的数感和估算

34、能力.2.充分调动学生的积极性,培养他们的合作精神,提高他们的辨识能力.教学重点1.无理数概念的探索过程.2.用计算器进行无理数的估算.3.了解无理数与有理数的区别,并能正确地进行判断.教学难点1.无理数概念的建立及估算.2.用所学定义正确判断所给数的属性.教学方法老师指导学生探索法教学过程一、创设问题情境,引入新课师同学们,我们在上节课了解到有理数又不够用了,并且我们还发现了一些数,如a2=2,b2=5中的a,b既不是整数,也不是分数,那么它们究竟是什么数呢?本节课我们就来揭示它的真面目.二、讲授新课1.导入:师请看图大家判断一下3个正方形的边长之间有怎样的大小关系?说说你的理由.生因为3个

35、正方形的面积分别为1,2,4,而面积又等于边长的平方,所以面积大的正方形边长就大.师大家能不能判断一下面积为2的正方形的边长a的大致范围呢?生因为a2大于1且a2小于4,所以a大致为1点几.师很好.a肯定比1大而比2小,可以表示为1a2.那么a究竟是1点几呢?请大家用计算器进行探索,首先确定十分位,十分位究竟是几呢?如1.12=1.21,1.22=1.44,1.32=1.69,1.42=1.96,1.52=2.25,而a2=2,故a应比1.4大且比1.5小,可以写成1.4a1.5,所以a是1点4几,即十分位上是4,请大家用同样的方法确定百分位、千分位上的数字.生因为1.412=1.9881,1

36、.422=2.0164,所以a应比1.41大且比1.42小,所以百分位上数字为1.生因为1.4112=1.990921,1.4122=1.993744,1.4132=1.996569,1.4142=1.999396,1.4152=2.002225,所以a应比1.414大而比1.415小,即千分位上的数字为4.生因为1.41422=1.99996164,1.41432=2.00024449,所以a应比1.4142大且比1.4143小,即万分位上的数字为2.师大家非常聪明,请一位同学把自己的探索过程整理一下,用表格的形式反映出来.生我的探索过程如下.边长a面积S1a21S41.4a1.51.96S

37、2.251.41a1.421.9881S2.01641.414a1.4151.999396S2.0022251.4142a1.41431.99996164S2.00024449师还可以继续下去吗?生可以.师请大家继续探索,并判断a是有限小数吗?生a=1.41421356,还可以再继续进行,且a是一个无限不循环小数.师请大家用上面的方法估计面积为5的正方形的边长b的值.边长b会不会算到某一位时,它的平方恰好等于5?请大家分组合作后回答.(约4分钟)生b=2.236067978,还可以再继续进行,b也是一个无限不循环小数.生边长b不会算到某一位时,它的平方恰好等于5,但我不知道为什么.师好.这位同

38、学很坦诚,不会就要大胆地提出来,而不要冒充会,这样才能把知识学扎实,学透,大家应该向这位同学学习.这个问题我来回答.如果b算到某一位时,它的平方恰好等于5,即b是一个有限小数,那么它的平方一定是一个有限小数,而不可能是5,所以b不可能是有限小数.2.无理数的定义请大家把下列各数表示成小数.3,并看它们是有限小数还是无限小数,是循环小数还是不循环小数.大家可以每个小组计算一个数,这样可以节省时间.生3=3.0,=0.8,=,生3,是有限小数,是无限循环小数.师上面这些数都是有理数,所以有理数总可以用有限小数或无限循环小数表示.反过来,任何有限小数或无限循环小数都是有理数.像上面研究过的a2=2,

39、b2=5中的a,b是无限不循环小数.无限不循环小数叫无理数(irrational number).除上面的a,b外,圆周率=3.14159265也是一个无限不循环小数,0.5858858885(相邻两个5之间8的个数逐次加1)也是一个无限不循环小数,它们都是无理数.3.有理数与无理数的主要区别(1)无理数是无限不循环小数,有理数是有限小数或无限循环小数.(2)任何一个有理数都可以化为分数的形式,而无理数则不能.4.例题讲解下列各数中,哪些是有理数?哪些是无理数?3.14,0.1010010001(相邻两个1之间0的个数逐次加1).解:有理数有3.14,. 无理数有0.1010010001.三、

40、课堂练习(一)随堂练习下列各数中,哪些是有理数?哪些是无理数?0.4583,18.解:有理数有0.4583,18. 无理数有.(二)补充练习投影片(2.1.2 A)判断题(1)有理数与无理数的差都是有理数.(2)无限小数都是无理数.(3)无理数都是无限小数.(4)两个无理数的和不一定是无理数.解:(1)错.例1是无理数.(2)错.例是有理数.(3)对.因为无理数就是无限不循环小数,所以是无限小数.(4)对.因为两个符号相反的无理数之和是有理数.例=0.投影片(2.1.2 B)下列各数中,哪些是有理数?哪些是无理数?0.351,3.14159,5.2323332,123456789101112(

41、由相继的正整数组成).解:有理数有0.351,3.14159,无理数有5.2323332,123456789101112.投影片(2.1.2 C)在下列每一个圈里,至少填入三个适当的数.生有理数集合填0,3.无理数集合填,0.323323332.四、课时小结本节课我们学习了以下内容.1.用计算器进行无理数的估算.2.无理数的定义.3.判断一个数是无理数或有理数.五、课后作业:见作业本。2.2平方根(1)教学目标:1、了解算术平方根的概念,会用根号表示一个数的算术平方根。 2、会求一个正数的算术平方根。 3、了解算术平方根的性质。教学重点:算术平方根的概念、性质,会用根号表示一个正数的算术平方根

42、。教学难点:算术平方根的概念、性质。教学过程:一、问题引入1.教师活动:回顾上节课的拼图活动及探索无理数的过程,提出问题:面积为13的正方形的边长究竟是多少?学生活动:(1)完成课本P32的填空:a2=_b2=_,c2=_d2=_e2=_,f2=_(2)a,b,c,d,e,f中哪些是有理数,哪些是无理数?你能表示它们吗?2.师生互动集体交流后,说明无理数也需要一种表示方法。二、讲授新课:算术平方根的概念:一般地,如果一个正数的平方等于,即,那么,这个正数就叫做的算术平方根。记为:“”读做根号。特别地,0的算术平方根是0。那么,则= b2=3,则b=;这样的话,一个非负数的算术平方根就可以表示为

43、。例1 分别写出下列各数的算术平方根(要求一个数的算术平方根,一般的方法是先按平方的概念来找哪个数的平方等于这个数。)例2自由下落物体的高度h(米)与下落时间t(秒)的关系为h=4.9t2.有一铁球从19.6 米高的建筑物上自由下落,到达地面需要多长时间 ?学生活动:一个同学在黑板上板演,其他同学在练习本上做,然后交流。师生互动:完成引例中的,则,以后我们可以利用计算器求出这个数的近似值。三、随堂练习:P39 1四、小结:(1)内容总结:算术平方根的定义、表示;的双重非负性。(2)方法归纳:转化的数学方法:即将陌生的问题转化为熟悉的问题解决。五、作业:P40 习题2.3 1 22.2平方根(二)教学目标:1、了解平方根的概念,会用根号表示一个数的平方根。 2、会求一个正数的平方根。 3、了解平方根和算术平方根的性质。 4、了解乘方和开方是互逆运算,会利用这个互逆运算求某些非负数的算术平方根和平方根。教学重点:了解平方根和开平方的概念、性质,会用根号表示一个正数的算术平方根和平方根。教学难点:平方根和算术平方根的区别。负数没有平方根,即负数不能进行开平方运算。教学过程:一、复习提问1、算术平方根的概念,任何一个有理数都有算术平方根吗?算术平方根有什么性质。2、9的算术平方根是 ,3的平

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服