资源描述
第六章
6.l、设通过座椅支承面传至人体垂直加速度的谱密度为一白噪声,
Ga ( f )=0.1。求在0.5~80HZ频率范围加权加速度均方根值aw和加权振级Law,并由表6-2查出相应人的主观感觉。
答:
查图知:人的主观感觉为极不舒适。
6.2、设车速u=20m/s ,路面不平度系,参考空间频率no=0.1。画出路面垂直位移、速度和加速度、、的谱图。画图时要求用双对数坐标,选好坐标刻度值,并注明单位。
解:
画出图形为:
6.3、设车身-车轮二自由度汽车模型,其车身部分固有频率fo =2Hz。它行驶在波长λ=5m的水泥接缝路上,求引起车身部分共振时的车速un(km/h)。该汽车车轮部分的固有频率f t=10Hz,在砂石路上常用车速为30km/h。问由于车轮部分共振时,车轮对路面作用的动载所形成的搓板路的波长λ=?
答:①当激振力等于车辆固有频率时,发生共振,
所以发生共振时的车速为:
②搓板路的波长 :
6.4、设车身单质量系统的幅频 |z/q| 用双对数坐标表示时如习题图6所示。路面输入谱与题6.2相同。求车身加速度的谱密度,画出其谱图,并计算0.1~10Hz频率范围车身加速度的均方根值。
答:①
6.5、上机计算作业(报告应包括:题目、计算说明、程序清单、结果分析)。
车身-车轮双质最系统参数:fo=1.5Hz、ζ=0.25、γ=9、μ=10。
“人体—座椅”系统参数:fs=3Hz、ζs=0.25。
车速u=20m/s,路面不平度系数Gq (no)=2.56×,参考空间频率no=0.1。
计算时频率步长△f=0.2Hz,计算频率点数N=180。
1)计算并画出幅频特性|z1/q|、|z2/z1|、|p/z2|和均方根值谱、、谱图。进—步计算、、、、、值。
2)改变“人体—座椅”系统参数:fs=1.5~6Hz、ζs=0.125~0.5。分析、值随fs、ζs的变化。
3)分别改变车身—车轮双质量系统参数:fo=0.25~3Hz、ζ=0.125~0.5、γ=4.5~18、μ=5~20。绘制、σfd、σFd/G三个响应量均方根值随以上四个系统参数变化的曲线。
提示:本题可简单利用matlab软件求出各数值,并作出相应的图。
6.6、设前、后车轮两个输入的双轴汽车模型行驶在随机输入的路面上,其质量分配系数ε=1,前、后车身局部系统的固有频率均为fo=2Hz,轴距L=2.5m。问引起车身俯仰角共振时的车速ua=? 相应随机路面输入的λ=?
答:
展开阅读全文