资源描述
水平弹簧
1、如图所示,光滑的水平面上有mA=2kg,mB= mC=1kg的三个物体,用轻弹簧将A与B连接.在A、C两边用力使三个物体靠近,A、B间的弹簧被压缩,此过程外力做功72 J,然后从静止开始释放,求:
(1)当物体B与C分离时,B对C做的功有多少?
(2)当弹簧再次恢复到原长时,A、B的速度各是多大?
(1)当弹簧恢复原长时,B与C分离,0=mAvA-(mB+mc)vC①,EP= +②,对C由动能定理得W=-0③,由①②③得W=18J,vA=vC=6m/s.
(2)取A、B为研究系统,mAvA -mB vC= mAvA’ +mB vC’, += mAvA’+ mB vC’,
当弹簧恢复到原长时A、B的速度分别为:,vA=vB=6m/s或vA=-2m/s, vB=10m/s.
2、(2)如图所示,光滑水平面轨道上有三个木块,A、B、C,质量分别为mB=mc=2m,mA=m,A、B用细绳连接,中间有一压缩的弹簧 (弹簧与滑块不栓接)。开始时A、B以共同速度v0运动,C静止。某时刻细绳突然断开,A、B被弹开,然后B又与C发生碰撞并粘在一起,最终三滑块速度恰好相同。求B与C碰撞前B的速度。
解析:(2)设共同速度为v,球A和B分开后,B的速度为,由动量守恒定律有,,联立这两式得B和C碰撞前B的速度为。考点:动量守恒定律
3、两物块A、B用轻弹簧相连,质量均为2 kg,初始时弹簧处于原长,A、B两物块都以v=6 m/s的速度在光滑的水平地面上运动,质量4 kg的物块C静止在前方,如图所示。B与C碰撞后二者会粘在一起运动。求在以后的运动中:
(1)当弹簧的弹性势能最大时,物块A的速度为多大?
(2)系统中弹性势能的最大值是多少?
解析:(1)当A、B、C三者的速度相等时弹簧的弹性势能最大. 由A、B、C三者组成的系统动量守恒, (2分)
解得 (2分)
(2)B、C碰撞时B、C组成的系统动量守恒,设碰后瞬间B、C两者速度为,则
mBv=(mB+mC) ==2 m/s (2分)
设物ABC速度相同时弹簧的弹性势能最大为Ep,
根据能量守恒Ep=(mB+mC) +mAv2-(mA+mB+mC)
=×(2+4)×22+×2×62-×(2+2+4)×32=12 J (4分)
4、两物块A、B用轻弹簧相连,质量均为2 kg,初始时弹簧处于原长,A、B两物块都以v=6 m/s的速度在光滑的水平地面上运动,质量4 kg的物块C静止在前方,如图所示.B与C碰撞后二者会粘在一起运动.求在以后的运动中:
(1)当弹簧的弹性势能最大时,物块A的速度为多大?
(2)系统中弹性势能的最大值是多少?
(3)A物块的速度有可能向左吗?简略说明理由.
答案 (1)3 m/s (2)12 J (3)A不可能向左运动
5、 用轻弹簧相连的质量均为2 kg的A、B两物块都以v= 6 m/s的速度在光滑的水平地面上运动,弹簧处于原长,质量4 kg的物块C静止在前方,如图所示.B与C碰撞后二者粘在一起运动.求:在以后的运动中:
(1)当弹簧的弹性势能最大时,物体A的速度多大?
(2)弹性势能的最大值是多大?
(3)A的速度有可能向左吗?为什么?
解析:(1)当A、B、C三者的速度相等时弹簧的弹性势能最大.
由于A、B、C三者组成的系统动量守恒,(mA+mB)v=(mA+mB+mC)vA′
解得 vA′= m/s=3 m/s
(2)B、C碰撞时B、C系统动量守恒,设碰后瞬间B、C两者速度为v′,则
mBv=(mB+mC)v′ v′==2 m/s
设物A速度为vA′时弹簧的弹性势能最大为Ep,
根据能量守恒Ep=(mB+mC) +mAv2-(mA+mB+mC)
=×(2+4)×22+×2×62-×(2+2+4)×32=12 J
(3)A不可能向左运动
系统动量守恒,mAv+mBv=mAvA+(mB+mC)vB
设 A向左,vA<0,vB>4 m/s 则作用后A、B、C动能之和
E′=mAvA2+(mB+mC)vB2>(mB+mC)vB2=48 J
实际上系统的机械能 E=Ep+(mA+mB+mC)·=12+36=48 J
根据能量守恒定律,>E是不可能的
6、 如图15所示,劲度系数为k的轻弹簧,左端连着绝缘介质小球B,右端连在固定板上,放在光滑绝缘的水平面上。整个装置处在场强大小为E、方向水平向右的匀强电场中。现有一质量为m、带电荷量为+q的小球A,从距B球为S处自由释放,并与B球发生碰撞。碰撞中无机械能损失,且A球的电荷量始终不变。已知B球的质量M=3m,B球被碰后作周期性运动,其运动周期(A、B小球均可视为质点)。
(1)求A球与B球第一次碰撞后瞬间,A球的速度V1和B球的速度V2;
(2)要使A球与B球第二次仍在B球的初始位置迎面相碰,求劲度系数k的可能取值。
答案:(1)设A球与B球碰撞前瞬间的速度为v0,
由动能定理得, ①
解得: ②
碰撞过程中动量守恒 ③
机械能无损失,有 ④
解得 负号表示方向向左
方向向右
(2)要使m与M第二次迎面碰撞仍发生在原位置,则必有A球重新回到O处所用 的时间t恰好等于B球的
⑥
(n=0 、1 、2 、3 ……) ⑦
由题意得: ⑧
解得: (n=0 、1 、2 、3 ……) ⑨
7、下图中,轻弹簧的一端固定,另一端与滑块B相连,B静止在水平导轨上,弹簧处在原长状态。另一质量与B相同滑块A,从导轨上的P点以某一初速度向B滑行,当A滑过距离时,与B相碰,碰撞时间极短,碰后A、B紧贴在一起运动,但互不粘连。已知最后A恰好返回出发点P并停止。滑块A和B与导轨的滑动摩擦因数都为,运动过程中弹簧最大形变量为,求A从P出发时的初速度。
解:设A、B质量皆为m,A刚接触B时速度为(碰前),由动能关系,有
①
A、B碰撞过程中动量守恒,令碰后A、B共同运动的速度为有
②
碰后A、B先一起向左运动,接着A、B一起被弹回,在弹簧恢复到原长时,设A、B的共同速度为,在这过程中,弹簧势能始末两态都为零,利用动能定理,有
③
此后A、B开始分离,A单独向右滑到P点停下,由动能定理有
④
由以上各式,解得 ⑤
1.如图所示,EF为水平地面,O点左侧是粗糙的,右侧是光滑的,一轻质弹簧右端与墙壁固定,左侧与静止在O点质量为m的小物块A连结,弹簧处于原长状态.. 质量为m的物块B在大小为F的水平恒力作用下由C处从静止开始向右运动,已知物块B与地面EO段间的滑动摩擦力大小为,物块B运动到O点与物块A相碰并一起向右运动(设碰撞时间极短),运动到D点时撤去外力F,已知CO=4S,OD=S.
求撤去外力后(1)弹簧的最大弹性势能(2)物块B最终离O点的距离
B
A
4S
E
C
O
D
S
F
1.解:B与A碰撞前速度由动能定理:得
B与A碰撞,由动量守恒定律有mv=2mv1 .得
碰后到物块A、B运动至速度减为0,弹簧的最大弹性势能
(2)设撤去F后,A、B一起回到O点时速度为v2,由机械能守恒得,。返回至O点时,A、B开始分离,B在摩擦力作用下向左做匀减速运动,设物块B最终离O点最大距离为x,由动能定理:,x=5S
6.光滑水平面上放着质量mA=1 kg的物块A与质量mB=2 kg的物块B,A与B均可视为质点,A靠在竖直墙壁上,A、B间夹一个被压缩的轻弹簧(弹簧与A、B均不拴接),用手挡住B不动,此时弹簧弹性势能EP=49 J.在A、B间系一轻质细绳,细绳长度大于弹簧的自然长度,如图所示.放手后B向右运动,绳在短暂时间内被拉断,之后B冲上与水平面相切的竖直半圆光滑轨道,其半径R=0.5 m,B恰能到达最高点C.取g=10 m/s2,求
(1)绳拉断后瞬间B的速度vB的大小;
(2)绳拉断过程绳对B的冲量I的大小;
(3)绳拉断过程绳对A所做的功W.
答案 (1)5 m/s (2)4 N·s (3)8 J
解析 (1)设B在绳被拉断后瞬间的速度为vB,到达C时的速度为vC,有mBg=mB mBvB2=mBvC2+2mBgR ②
代入数据得vB=5 m/s ③
(2)设弹簧恢复到自然长度时B的速度为v1,取水平向右为正方向,有Ep=mBv12 ④
I=mBvB-mBv1 ⑤
代入数据得I=-4 N·s,其大小为4 N·s ⑥
(3)设绳断后A的速度为vA,取水平向右为正方向,有mBv1=mBvB+mAvA ⑦
W=mAvA2 ⑧
代入数据得W=8 J ⑨
13、如图所示,坡道顶端距水平面高度为h,质量为m1的小物块A从坡道顶端由静止滑下,进入水平面上的滑道时无机械能损失,为使A制动,将轻弹簧的一端固定在水平滑道延长线M处的墙上,另一端与质量为m2的档板相连,弹簧处于原长时,B恰好位于滑道的末端O点。A与B碰撞时间极短,碰撞后结合在一起共同压缩弹簧。已知在OM段A、B与水平面间的动摩擦因数为μ,其余各处的摩擦不计,重力加速度为g,求
(1)物块A在档板B碰撞瞬间的速度v的大小;
(2)弹簧最大压缩时为d时的弹性势能EP(设弹簧处于原长时弹性势能为零)。
45.如图所示,一轻质弹簧的一端固定在滑块B上,另一端与滑块C接触但未连接,该整体静止放在离地面高为H的光滑水平桌面上。现有一滑块A从光滑曲面上离桌面h高处由静止开始下滑下,与滑块B发生碰撞(时间极短)并粘在一起压缩弹簧推动滑块C向前运动,经一段时间,滑块C脱离弹簧,继续在水平桌面上匀速运动一段时间后从桌面边缘飞出。已知求:
(1)滑块A与滑块B碰撞结束瞬间的速度;
(2)被压缩弹簧的最大弹性势能;
(3)滑块C落地点与桌面边缘的水平距离。
解:(1)滑块A从光滑曲面上h高处由静止开始滑下的过程中,机械能守恒,设其滑到底面的速度为v1,由机械能守恒定律有
①
解得: ②
滑块A与B碰撞的过程,A、B系统的动量守恒,碰撞结束瞬间具有共同速度设为v2,由动量守恒定律有
③
解得: ④
(2)滑块A、B发生碰撞后与滑块C一起压缩弹簧,压缩的过程机械能定恒,被压缩弹簧的弹性势能最大时,滑块A、B、C速度相等,设为速度v3,由动量定恒定律有:
⑤
⑥
由机械能定恒定律有:
⑦
(3)被压缩弹簧再次恢复自然长度时,滑块C脱离弹簧,设滑块A、B速度为v4,滑块C的速度为v5,分别由动量定恒定律和机械能定恒定律有:
⑨
⑩
解之得:(另一组解舍去)⑾
滑块C从桌面边缘飞出后做平抛运动:
⑿
⒀
解得之: ⒁
66.如图所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A 、B .它们的质量分别为mA、mB,弹簧的劲度系数为k , C为一固定挡板。系统处于静止状态。现开始用一恒力F沿斜面方向拉物块A 使之向上运动,求物块B 刚要离开C时物块A 的加速度a 和从开始到此时物块A 的位移d。重力加速度为g。
解析:令x1表示未加F时弹簧的压缩量,由胡克定律和牛顿定律可知
mAgsinθ=kx1 ①
令x2表示B 刚要离开C时弹簧的伸长量,a表示此时A 的加速度,由胡克定律和牛顿定律可知
kx2=mBgsinθ ②
F-mAgsinθ-kx2=mAa ③
由② ③ 式可得a= ④
由题意 d=x1+x2 ⑤
由①②⑤式可得d=
36.如图所示,质量均为m的物块A和B用弹簧连结起来,将它们悬于空中静止,弹簧处于原长状态,A距地面高度H=0.90m,同时释放两物块,A与地面碰撞后速度立即变为零,由于B的反弹,A刚好能离开地面。若B物块换为质量为2m的物块C(图中未画出),仍将它们悬于空中静止且弹簧为原长,从A距地面高度为H’处同时释放,设A也刚好能离开地面。已知弹簧的弹性势能EP与弹簧的劲度系数k和形变量x的关系是:EP=kx2。试求:(1)B反弹后,弹簧的最大伸长量。(2)H’的大小
答案:(1)A落地时,B的速度为
υB= ①
设反弹后上升的最大高度为x,
A恰好离开地面时 kx=mg ②
由系统机械能守恒 mυB2=mgx+kx2 ③
由①②③联立得 x=0.6m
(2)将B换成C后,A落地时,C的速度为 υC=
C反弹后上升到最高时A刚好离开地面, 故仍有 kx=mg
由系统机械能守恒
1/2·2mυc2=2mgx+kx2 解得:H’=0.75m
14.如图所示的装置可以测量飞行器在竖直方向上做匀加速直线运动的加速度.该装置是在矩形箱子的上、下壁上各安装一个可以测力的传感器,分别连接两根劲度系数相同(可拉伸可压缩)的轻弹簧的一端,弹簧的另一端都固定在一个滑块上,滑块套在光滑竖直杆上.现将该装置固定在一飞行器上,传感器P在上,传感器Q在下.飞行器在地面静止时,传感器P、Q显示的弹力大小均为10 N.求:
(1)滑块的质量.(地面处的g=10 m/s2)
(2)当飞行器竖直向上飞到离地面处,此处的重力加速度为多大?(R是地球的半径)
(3)若在此高度处传感器P显示的弹力大小为F'=20 N,此时飞行器的加速度是多大?
解析:(1)
(2)
解之得
(3)由牛顿第二定律,得,
所以
展开阅读全文