1、第一章一、选择题1.用来进行晶体结构分析的X射线学分支是( )A.X射线透射学;B.X射线衍射学;C.X射线光谱学;D.其它2. M层电子回迁到K层后,多余的能量放出的特征X射线称( )A. K;B. K;C. K;D. L。3. 当X射线发生装置是Cu靶,滤波片应选( )A Cu;B. Fe;C. Ni;D. Mo。4. 当电子把所有能量都转换为X射线时,该X射线波长称( )A. 短波限0;B. 激发限k;C. 吸收限;D. 特征X射线5.当X射线将某物质原子的K层电子打出去后,L层电子回迁K层,多余能量将另一个L层电子打出核外,这整个过程将产生( ) (多选题)A. 光电子;B. 二次荧光
2、;C. 俄歇电子;D. (A+C)二、正误题1. 随X射线管的电压升高,0和k都随之减小。( )2. 激发限与吸收限是一回事,只是从不同角度看问题。( )3. 经滤波后的X射线是相对的单色光。( )4. 产生特征X射线的前提是原子内层电子被打出核外,原子处于激发状态。( )5. 选择滤波片只要根据吸收曲线选择材料,而不需要考虑厚度。( ) 第二章一、 选择题1.有一倒易矢量为,与它对应的正空间晶面是( )。A. (210);B. (220);C. (221);D. (110);。2.有一体心立方晶体的晶格常数是0.286nm,用铁靶K(K=0.194nm)照射该晶体能产生( )衍射线。A. 三
3、条; B .四条; C. 五条;D. 六条。3.一束X射线照射到晶体上能否产生衍射取决于( )。A是否满足布拉格条件;B是否衍射强度I0;CA+B;D晶体形状。4.面心立方晶体(111)晶面族的多重性因素是( )。A4;B8;C6;D12。二、 正误题1.倒易矢量能唯一地代表对应的正空间晶面。( )2.X射线衍射与光的反射一样,只要满足入射角等于反射角就行。( )3.干涉晶面与实际晶面的区别在于:干涉晶面是虚拟的,指数间存在公约数n。( )4.布拉格方程只涉及X射线衍射方向,不能反映衍射强度。( )5.结构因子F与形状因子G都是晶体结构对衍射强度的影响因素。( )第三章三、 选择题1.最常用的
4、X射线衍射方法是( )。A. 劳厄法;B. 粉末多法;C. 周转晶体法;D. 德拜法。2.德拜法中有利于提高测量精度的底片安装方法是( )。A. 正装法;B. 反装法;C. 偏装法;D. A+B。3.德拜法中对试样的要求除了无应力外,粉末粒度应为( )。A. 250目;C. 在250-325目之间;D. 任意大小。4.测角仪中,探测器的转速与试样的转速关系是( )。A. 保持同步11 ;B. 21 ;C. 12 ;D. 10 。5.衍射仪法中的试样形状是( )。A. 丝状粉末多晶;B. 块状粉末多晶;C. 块状单晶;D. 任意形状。四、 正误题1.大直径德拜相机可以提高衍射线接受分辨率,缩短暴
5、光时间。( )2.在衍射仪法中,衍射几何包括二个圆。一个是测角仪圆,另一个是辐射源、探测器与试样三者还必须位于同一聚焦圆。( )3.选择小的接受光栏狭缝宽度,可以提高接受分辨率,但会降低接受强度。( )4.德拜法比衍射仪法测量衍射强度更精确。( )5.衍射仪法和德拜法一样,对试样粉末的要求是粒度均匀、大小适中,没有应力。( )第四章五、 选择题1.测定钢中的奥氏体含量,若采用定量X射线物相分析,常用方法是( )。A. 外标法;B. 内标法;C. 直接比较法;D. K值法。2. X射线物相定性分析时,若已知材料的物相可以查( )进行核对。A. Hanawalt索引;B. Fenk索引;C. Da
6、vey索引;D. A或B。3.德拜法中精确测定点阵常数其系统误差来源于( )。A. 相机尺寸误差;B. 底片伸缩;C. 试样偏心;D. A+B+C。4.材料的内应力分为三类,X射线衍射方法可以测定( )。A. 第一类应力(宏观应力);B. 第二类应力(微观应力);C. 第三类应力;D. A+B+C。5.Sin2测量应力,通常取为( )进行测量。A. 确定的角;B. 0-45之间任意四点;C. 0、45两点;D. 0、15、30、45四点。六、 正误题1.要精确测量点阵常数。必须首先尽量减少系统误差,其次选高角度角,最后还要用直线外推法或柯亨法进行数据处理。( )2. X射线衍射之所以可以进行物
7、相定性分析,是因为没有两种物相的衍射花样是完全相同的。( )3.理论上X射线物相定性分析可以告诉我们被测材料中有哪些物相,而定量分析可以告诉我们这些物相的含量有多少。( )4.只要材料中有应力就可以用X射线来检测。( )5.衍射仪和应力仪是相同的,结构上没有区别。( )第五章七、 选择题1.若H-800电镜的最高分辨率是0.5nm,那么这台电镜的有效放大倍数是( )。A. 1000;B. 10000;C. 40000;D.600000。2. 可以消除的像差是( )。A. 球差;B. 像散;C. 色差;D. A+B。3. 可以提高TEM的衬度的光栏是( )。A. 第二聚光镜光栏;B. 物镜光栏;
8、C. 选区光栏;D. 其它光栏。4. 电子衍射成像时是将( )。A. 中间镜的物平面与与物镜的背焦面重合;B. 中间镜的物平面与与物镜的像平面重合;C. 关闭中间镜;D. 关闭物镜。5.选区光栏在TEM镜筒中的位置是( )。A. 物镜的物平面;B. 物镜的像平面C. 物镜的背焦面;D. 物镜的前焦面。八、 正误题1.TEM的分辨率既受衍射效应影响,也受透镜的像差影响。( )2.孔径半角是影响分辨率的重要因素,TEM中的角越小越好。( )3.有效放大倍数与仪器可以达到的放大倍数不同,前者取决于仪器分辨率和人眼分辨率,后者仅仅是仪器的制造水平。( )4.TEM中主要是电磁透镜,由于电磁透镜不存在凹
9、透镜,所以不能象光学显微镜那样通过凹凸镜的组合设计来减小或消除像差,故TEM中的像差都是不可消除的。( )5.TEM的景深和焦长随分辨率r0的数值减小而减小;随孔径半角的减小而增加;随放大倍数的提高而减小。( )第六章九、 选择题1.单晶体电子衍射花样是( )。A. 规则的平行四边形斑点;B. 同心圆环;C. 晕环;D.不规则斑点。2. 薄片状晶体的倒易点形状是( )。A. 尺寸很小的倒易点;B. 尺寸很大的球;C. 有一定长度的倒易杆;D. 倒易圆盘。3. 当偏离矢量SKa)(3) CuKa能激发CuLa荧光辐射;(Kala)3. 什么叫“相干散射”、“非相干散射”、“荧光辐射”、“吸收限”
10、、“俄歇效应”?答: 当射线通过物质时,物质原子的电子在电磁场的作用下将产生受迫振动,受迫振动产生交变电磁场,其频率与入射线的频率相同,这种由于散射线与入射线的波长和频率一致,位相固定,在相同方向上各散射波符合相干条件,故称为相干散射。 当射线经束缚力不大的电子或自由电子散射后,可以得到波长比入射射线长的射线,且波长随散射方向不同而改变,这种散射现象称为非相干散射。 一个具有足够能量的射线光子从原子内部打出一个K电子,当外层电子来填充K空位时,将向外辐射K系射线,这种由射线光子激发原子所发生的辐射过程,称荧光辐射。或二次荧光。 指射线通过物质时光子的能量大于或等于使物质原子激发的能量,如入射光
11、子的能量必须等于或大于将K电子从无穷远移至K层时所作的功W,称此时的光子波长称为K系的吸收限。 当原子中K层的一个电子被打出后,它就处于K激发状态,其能量为Ek。如果一个L层电子来填充这个空位,K电离就变成了L电离,其能由Ek变成El,此时将释Ek-El的能量,可能产生荧光射线,也可能给予L层的电子,使其脱离原子产生二次电离。即K层的一个空位被L层的两个空位所替代,这种现象称俄歇效应。4. 产生X射线需具备什么条件?答:实验证实:在高真空中,凡高速运动的电子碰到任何障碍物时,均能产生X射线,对于其他带电的基本粒子也有类似现象发生。 电子式X射线管中产生X射线的条件可归纳为:1,以某种方式得到一
12、定量的自由电子;2,在高真空中,在高压电场的作用下迫使这些电子作定向高速运动;3,在电子运动路径上设障碍物以急剧改变电子的运动速度。5. 射线具有波粒二象性,其微粒性和波动性分别表现在哪些现象中?答:波动性主要表现为以一定的频率和波长在空间传播,反映了物质运动的连续性;微粒性主要表现为以光子形式辐射和吸收时具有一定的质量,能量和动量,反映了物质运动的分立性。6. 计算当管电压为50 kv时,电子在与靶碰撞时的速度与动能以及所发射的连续谱的短波限和光子的最大动能。解:已知条件:U=50kv电子静止质量:m0=9.110-31kg光速:c=2.998108m/s电子电量:e=1.60210-19C
13、普朗克常数:h=6.62610-34J.s电子从阴极飞出到达靶的过程中所获得的总动能为 E=eU=1.60210-19C50kv=8.0110-18kJ由于E=1/2m0v02所以电子与靶碰撞时的速度为 v0=(2E/m0)1/2=4.2106m/s所发射连续谱的短波限0的大小仅取决于加速电压 0()12400/v(伏) 0.248辐射出来的光子的最大动能为 E0h0hc/01.9910-15J7. 特征X射线与荧光X射线的产生机理有何异同?某物质的K系荧光X射线波长是否等于它的K系特征X射线波长?答:特征X射线与荧光X射线都是由激发态原子中的高能级电子向低能级跃迁时,多余能量以X射线的形式放
14、出而形成的。不同的是:高能电子轰击使原子处于激发态,高能级电子回迁释放的是特征X射线;以 X射线轰击,使原子处于激发态,高能级电子回迁释放的是荧光X射线。某物质的K系特征X射线与其K系荧光X射线具有相同波长。8. 连续谱是怎样产生的?其短波限与某物质的吸收限有何不同(V和VK以kv为单位)?答 当射线管两极间加高压时,大量电子在高压电场的作用下,以极高的速度向阳极轰击,由于阳极的阻碍作用,电子将产生极大的负加速度。根据经典物理学的理论,一个带负电荷的电子作加速运动时,电子周围的电磁场将发生急剧变化,此时必然要产生一个电磁波,或至少一个电磁脉冲。由于极大数量的电子射到阳极上的时间和条件不可能相同
15、,因而得到的电磁波将具有连续的各种波长,形成连续射线谱。在极限情况下,极少数的电子在一次碰撞中将全部能量一次性转化为一个光量子,这个光量子便具有最高能量和最短的波长,即短波限。连续谱短波限只与管压有关,当固定管压,增加管电流或改变靶时短波限不变。原子系统中的电子遵从泡利不相容原理不连续地分布在K,L,M,N等不同能级的壳层上,当外来的高速粒子(电子或光子)的动能足够大时,可以将壳层中某个电子击出原子系统之外,从而使原子处于激发态。这时所需的能量即为吸收限,它只与壳层能量有关。即吸收限只与靶的原子序数有关,与管电压无关。9. 为什么会出现吸收限?K吸收限为什么只有一个而L吸收限有三个?当激发K系
16、荧光射线时,能否伴生L系?当L系激发时能否伴生K系?答:一束X射线通过物体后,其强度将被衰减,它是被散射和吸收的结果。并且吸收是造成强度衰减的主要原因。物质对X射线的吸收,是指X射线通过物质对光子的能量变成了其他形成的能量。X射线通过物质时产生的光电效应和俄歇效应,使入射X射线强度被衰减,是物质对X射线的真吸收过程。光电效应是指物质在光子的作用下发出电子的物理过程。因为L层有三个亚层,每个亚层的能量不同,所以有三个吸收限,而K只是一层,所以只有一个吸收限。激发K系光电效应时,入射光子的能量要等于或大于将K电子从K层移到无穷远时所做的功Wk。从X射线被物质吸收的角度称入K为吸收限。当激发K系荧光
17、X射线时,能伴生L系,因为L系跃迁到K系自身产生空位,可使外层电子迁入,而L系激发时不能伴生K系。10. X射线实验室用防护铅屏厚度通常至少为lmm,试计算这种铅屏对CuK、MoK辐射的透射系数各为多少?解:穿透系数IH/IO=e-mH, 其中m:质量吸收系数/cm2g-1,:密度/gcm-3 H:厚度/cm,本题Pb=11.34gcm-3,H=0.1cm 对Cr K,查表得m=585cm2g-1, 其穿透系数IH/IO=e-mH=e-58511.340.1=7.82e-289= 对Mo K,查表得m=141cm2g-1, 其穿透系数IH/IO=e-mH=e-14111.340.1=3.62e
18、-70=11. 厚度为1mm的铝片能把某单色射线束的强度降低为原来的23.9,试求这种射线的波长。试计算含Wc0.8,Wcr4,Ww18的高速钢对MoK辐射的质量吸收系数。解:IHI0e-(/) HI0e-mH 式中m/称质量衷减系数, 其单位为cm2g,为密度,H为厚度。今查表Al的密度为2.70g/cm-3. H=1mm, IH=23.9% I0带入计算得m5.30查表得:0.07107nm(MoK)(2)m=1m1+2m2+imi 1, 2 i为吸收体中的质量分数,而m1,m2 mi 各组元在一定X射线衰减系数m=0.80.70430.418105.4(10.8418)38.3=49.7
19、612(cm2g)14. 欲使钼靶X射线管发射的X射线能激发放置在光束中的铜样品发射K系荧光辐射,问需加的最低的管压值是多少?所发射的荧光辐射波长是多少?解:eVk=hc/Vk=6.62610-342.998108/(1.60210-190.7110-10)=17.46(kv)0=1.24/v(nm)=1.24/17.46(nm)=0.071(nm) 其中 h为普郎克常数,其值等于6.62610-34 e为电子电荷,等于1.60210-19c故需加的最低管电压应17.46(kv),所发射的荧光辐射波长是0.071纳米。15. 什么厚度的镍滤波片可将CuK辐射的强度降低至入射时的70?如果入射X
20、射线束中K和K强度之比是5:1,滤波后的强度比是多少?已知m49.03cm2g,m290cm2g。解: 有公式I=I0e-umm =I0e-ut查表得:=8.90g/cm3 um=49.03cm2/g 因为 I=I0*70% -umt=0.7 解得 t=0.008mm 所以滤波片的厚度为0.008mm 又因为: I=50e-mt =0e-mt 带入数据解得I /=28.8滤波之后的强度之比为29:116. 为使CuK线的强度衰减12,需要多厚的Ni滤波片?(Ni的密度为8.90gcm3)。CuK1和CuK2的强度比在入射时为2:1,利用算得的Ni滤波片之后其比值会有什么变化? 解:设滤波片的厚
21、度为t根据公式I/ I0=e-Umt;查表得铁对CuK的m49.3(cm2/g),有:1/2=exp(-mt)即t=-(ln0.5)/ m=0.00158cm根据公式:m=K3Z3,CuK1和CuK2的波长分别为:0.154051和0.154433nm ,所以m=K3Z3,分别为:49.18(cm2/g),49.56(cm2/g)I1/I2=2e-Umt/e-Umt =2exp(-49.188.90.00158)/ exp(-49.568.90.00158)=2.01答:滤波后的强度比约为2:1。17. 铝为面心立方点阵,a=0.409nm。今用CrKa(=0.209nm)摄照周转晶体相,X射
22、线垂直于001。试用厄瓦尔德图解法原理判断下列晶面有无可能参与衍射:(111),(200),(220),(311),(331),(420)。答:有题可知以上六个晶面都满足了 h k l 全齐全偶的条件。根据艾瓦尔德图解法在周转晶体法中只要满足 sin1 。所以着两个晶面不能发生衍射其他的都有可能。18. 试简要总结由分析简单点阵到复杂点阵衍射强度的整个思路和要点。答:在进行晶体结构分析时,重要的是把握两类信息,第一类是衍射方向,即角,它在一定的情况下取决于晶面间距d。衍射方向反映了晶胞的大小和形状因素,可以利用布拉格方程来描述。第二类为衍射强度,它反映的是原子种类及其在晶胞中的位置。简单点阵只
23、由一种原子组成,每个晶胞只有一个原子,它分布在晶胞的顶角上,单位晶胞的散射强度相当于一个原子的散射强度。复杂点阵晶胞中含有n个相同或不同种类的原子,它们除占据单胞的顶角外,还可能出现在体心、面心或其他位置。 复杂点阵的衍射波振幅应为单胞中各原子的散射振幅的合成。由于衍射线的相互干涉,某些方向的强度将会加强,而某些方向的强度将会减弱甚至消失。这样就推导出复杂点阵的衍射规律称为系统消光(或结构消光)。19. 试述原子散射因数f和结构因数的物理意义。结构因数与哪些因素有关系?答:原子散射因数:f=Aa/Ae=一个原子所有电子相干散射波的合成振幅/一个电子相干散射波的振幅,它反映的是一个原子中所有电子
24、散射波的合成振幅。结构因数:式中结构振幅FHKL=Ab/Ae=一个晶胞的相干散射振幅/一个电子的相干散射振幅结构因数表征了单胞的衍射强度,反映了单胞中原子种类,原子数目,位置对(HKL)晶面方向上衍射强度的影响。结构因数只与原子的种类以及在单胞中的位置有关,而不受单胞的形状和大小的影响。20. 计算结构因数时,基点的选择原则是什么?如计算面心立方点阵,选择(0,0,0)、(1,1,0)、(0,1,0)与(1,0,0)四个原子是否可以,为什么?答: 基点的选择原则是每个基点能代表一个独立的简单点阵,所以在面心立方点阵中选择(0,0,0)、(1,1,0)、(0,1,0)与(1,0,0)四个原子作基
25、点是不可以的。因为这4点是一个独立的简单立方点阵。21. 当体心立方点阵的体心原子和顶点原子种类不相同时,关于H+K+L=偶数时,衍射存在,H+K+L=奇数时,衍射相消的结论是否仍成立?答:假设A原子为顶点原子,B原子占据体心,其坐标为:A:0 0 0 (晶胞角顶)B:1/2 1/2 1/2 (晶胞体心)于是结构因子为:FHKL=fAei2(0K+0H+0L)+fBei2(H/2+K/2+L/2)=fA+fBe i(H+K+L)因为: eni=eni=(1)n所以,当H+K+L=偶数时: FHKL=fA+fB FHKL2=(fA+fB)2 当H+K+L=奇数时: FHKL=fAfB FHKL2
26、=(fAfB)2从此可见, 当体心立方点阵的体心原子和顶点原主种类不同时,关于H+K+L=偶数时,衍射存在的结论仍成立,且强度变强。而当H+K+L=奇数时,衍射相消的结论不一定成立,只有当fA=fB时,FHKL=0才发生消光,若fAfB,仍有衍射存在,只是强度变弱了。22. 今有一张用CuKa辐射摄得的钨(体心立方)的粉末图样,试计算出头四根线条的相对积分强度(不计e-2M和A()。若以最强的一根强度归一化为100,其他线强度各为多少?这些线条的值如下,按下表计算。线条/(*)HKLPfF2()PF2强度归一化123420.329.236.443.6解:线条/(*)HKLPSin/nm-1fF
27、2P F2强度归一化120.3(110)122.250158.513689.013.96622294199.74100229.2(200)63.164151.710691.66.1348393544.9717336.4(211)243.848847.18873.63.8366817066.8936443.6(220)124.472743.57569.02.9105264354.891223. CuK辐射(=0.154 nm)照射Ag(f.c.c)样品,测得第一衍射峰位置2=38,试求Ag的点阵常数。答:由sin2=(h2+k2+l2)/4a2 查表由Ag面心立方得第一衍射峰(h2+k2+l2)
28、=3,所以代入数据2=38,解得点阵常数a=0.671nm24. 试总结德拜法衍射花样的背底来源,并提出一些防止和减少背底的措施。答:德拜法衍射花样的背底来源是入射波的非单色光、进入试样后出生的非相干散射、空气对X 射线的散射、温度波动引起的热散射等。采取的措施有尽量使用单色光、缩短曝光时间、恒温试验等。25. 粉末样品颗粒过大或过小对德拜花样影响如何?为什么?板状多晶体样品晶粒过大或过小对衍射峰形影响又如何?答. 粉末样品颗粒过大会使德拜花样不连续,或过小,德拜宽度增大,不利于分析工作的进行。因为当粉末颗粒过大(大于10-3cm)时,参加衍射的晶粒数减少,会使衍射线条不连续;不过粉末颗粒过细
29、(小于10-5cm)时,会使衍射线条变宽,这些都不利于分析工作。多晶体的块状试样,如果晶粒足够细将得到与粉末试样相似的结果,即衍射峰宽化。但晶粒粗大时参与反射的晶面数量有限,所以发生反射的概率变小,这样会使得某些衍射峰强度变小或不出现。26. 品吸收与衍射强度(公式)、衍射装备及应用等方面比较衍射仪法与德拜法的异同点。试用厄瓦尔德图解来说明德拜衍射花样的形成。答.入射光束样品形状成相原理衍射线记录衍射花样样品吸收衍射强度衍射装备应用德拜法单色圆柱状布拉格方程辐射探测器衍射环同时吸收所有衍射德拜相机试样少时进行分析.过重时也可用衍射仪法单色平板状布拉格方程底片感光衍射峰逐一接收衍射测角仪强度测量
30、.花样标定.物相分析如图所示,衍射晶面满足布拉格方程就会形成一个反射圆锥体。环形底片与反射圆锥相交就在底片上留下衍射线的弧对。27. 同一粉末相上背射区线条与透射区线条比较起来其较高还是较低?相应的d较大还是较小?既然多晶粉末的晶体取向是混乱的,为何有此必然的规律答:其较高,相应的d较小,虽然多晶体的粉末取向是混乱的,但是衍射倒易球与反射球的交线,倒易球半径由小到大,也由小到大,d是倒易球半径的倒数,所以较高,相应的d较小。28. 测角仪在采集衍射图时,如果试样表面转到与入射线成30角,则计数管与人射线所成角度为多少?能产生衍射的晶面,与试样的自由表面呈何种几何关系?答:60度。因为计数管的转
31、速是试样的2倍。辐射探测器接收的衍射是那些与试样表面平行的晶面产生的衍射。晶面若不平行于试样表面,尽管也产生衍射,但衍射线进不了探测器,不能被接收。29. 下图为某样品稳拜相(示意图),摄照时未经滤波。巳知1、2为同一晶面衍射线,3、4为另一晶面衍射线试对此现象作出解释答:未经滤波,即未加滤波片,因此K系特征谱线的k、k两条谱线会在晶体中同时发生衍射产生两套衍射花样,所以会在透射区和背射区各产生两条衍射花样。30. ATiO2(锐铁矿)与RTiO2(金红石:)混合物衍射花样中两相最强线强度比I ATiO2IR-TO21.5。试用参比强度法计算两相各自的质量分数。 解: KR=3.4 KA=4.
32、3 那么K=KR /KA=0.8 R=1/(1KIA/IR)=1/(1+0.81.5)=45% A=55%31. 在-Fe2O3及Fe3O4混合物的衍射图样中,两根最强线的强度比IFe2O3/I Fe3O4=1.3,试借助于索引上的参比强度值计算-Fe2O3的相对含量。答:依题意可知 在混合物的衍射图样中,两根最强线的强度比这里设所求的相对含量为,的含量为已知为,借助索引可以查到及的参比强度为和,由可得的值 再由以及 可以求出所求。32. 物相定性分析的原理是什么?对食盐进行化学分析与物相定性分析,所得信息有何不同?答: 物相定性分析的原理:X射线在某种晶体上的衍射必然反映出带有晶体特征的特定
33、的衍射花样(衍射位置、衍射强度I),而没有两种结晶物质会给出完全相同的衍射花样,所以我们才能根据衍射花样与晶体结构一一对应的关系,来确定某一物相。 对食盐进行化学分析,只可得出组成物质的元素种类(Na,Cl等)及其含量,却不能说明其存在状态,亦即不能说明其是何种晶体结构,同种元素虽然成分不发生变化,但可以不同晶体状态存在,对化合物更是如此。定性分析的任务就是鉴别待测样由哪些物相所组成。33. 物相定量分析的原理是什么?试述用K值法进行物相定量分析的过程。答:根据X射线衍射强度公式,某一物相的相对含量的增加,其衍射线的强度亦随之增加,所以通过衍射线强度的数值可以确定对应物相的相对含量。由于各个物
34、相对X射线的吸收影响不同,X射线衍射强度与该物相的相对含量之间不成线性比例关系,必须加以修正。这是内标法的一种,是事先在待测样品中加入纯元素,然后测出定标曲线的斜率即K值。当要进行这类待测材料衍射分析时,已知K值和标准物相质量分数s,只要测出a相强度Ia与标准物相的强度Is的比值Ia/Is就可以求出a相的质量分数a。34. 试借助PDF(ICDD)卡片及索引,对表1、表2中未知物质的衍射资料作出物相鉴定。表1。d/(0.1nm)I/I1d/(0.1nm)I/I1d/(0.1nm)I/I13.66501.46101.06103.171001.42501.01102.24801.31300.961
35、01.91401.23100.85101.83301.12101.60201.0810表2。d/(0.1nm)I/I1d/(0.1nm)I/I1d/(0.1nm)I/I12.40501.26100.93102.09501.25200.85102.031001.20100.81201.75401.06200.80201.47301.0210答:(1)先假设表中三条最强线是同一物质的,则d1=3.17,d2=2.24,d3=3.66,估计晶面间距可能误差范围d1为3.193.15,d2为2.262.22,d3为3.683.64。 根据d1值(或d2,d3),在数值索引中检索适当的d组,找出与d1,d2,d3值复合较好的一些卡片。 把待测相的三强线的d值和I/I1值相比较,淘汰一些不相符的卡片,得到:物质卡片顺序号待测物质