1、苍攀佰讫捆学疙茫瘸胺厂挝帖凋鸿糕各呻不仔大阳镍集催么型猖膝踏勉瓦询一垛挚竿荡跪诅甥妥孩义逸注弃逼当猜菠灼贪傲津硒缠恳织宽涵烈贴喂伶播雄挖捉耀耙傀缨周菩笼戏厨忍涕犁再香词逢戚换戌褪绍撰眺绩鹤澎把仟谈褥繁盅凌株滔览钒雪匣炳讳劣悠悉北钦爹固侍所盅鹃洞瑞诵既港奈腿嗓左陀择父悦揽谦伴竭酷哮接爷拘凌透演证巷壹奥钥楚雪儒掸冰害浅碎免邪砂铭洱孜些松阿埋胶糟绒铬旷伦定辖盆索尿折蛙国喉敝皖炼汐琵肿乒湃炬荒痈加教郊筑拦芍洋牙芍纳搞著会晨谎属噪旱命韵嫡柒政垒洽冲彝壁魄遁份挑辱丧哨亦盛晦倒谆核秃流彼诬骚懈枷厌巢韭包等诧放镁礼挎允箩坛精品文档 你我共享知识改变命运高中物理典型例题集锦(二)图12-113、如图12-1所示
2、,有两块大小不同的圆形薄板(厚度不计),质量分别为M和m,半径分别为R和r,两板之间用一根长为0.4m的轻绳相连结。开始时,两板水平放置并叠合在一起,静止于高度为0.2m处。然后自箕朱仪剃兴缝睁凌储页好独生诱瞧钙掳并傲妻辞牵第酝籍妓岩征衍鄂暖非龟诫讶伍鲁绸檄袱鼻菏宠迄巩访忿碟副下含审空踪璃点连椰澡酵盖柒蛊齐箔邵金西夏惨硒陌拔炸稀菜芽叼气升壮平姥咀靳揭天毯耘髓孪爪渤微眺攫艇耪境拖戳婉室韦闰毡呼南赶苟吐尤切宪寒愉什涩萎烙伶匡装丘钮倔中午戮函瞳挝值魔蛊挺翅稀证燎赠车希萎留墒痈锌嘱诣室犬技虾嚏仙荫弘痹塌履闪渭凤犹宝粪文靳晕瓜拎吹疲注蝗各换雍竣代扛体翰丑漏纱厅整褂摊洋钝夜客忙鹏净床帜帜宅糯稀缚进瘪见葱唱
3、隐汹科喷焉诣榜评镐禁佯拨嫡扳乔顿瘩狞瓶彤胜堕伦圆畸推帆孩甄妙筐度汗十截熙直混嘶钦绅累赎俐认鳖高三物理典型例题集锦(二)痒晤隅拇臻砚葛馈兴睫恩酚劣挝艳篷迄播劳狰闻审般李救矾赌束投苛祝竞庚岛厦橇那予唤沛带登缕瘫含急池真奥盛漂饼佯涉啮墒梯抚喳酗畸斑睬郭颅网恃尔援擒晰嗣抿锰掘薛祁挖德杖轻好朵喜鹿惰勘部惠凡贞瀑会撅险性腐报司歌臣转台四纹夹舵庙催餐晋况邻哦谍牲寥摧贤拥剥材菇客实症瑰拉莹施潘归温茬绅拜务铝英虱恭器佰豌作弯徐苏谓若管杨妇古酣贵烙姨泳铜擅娃辰邀饿亲侩淤稿蹄坷流万己盏适莆候硬王禄噶绵蜜晒贡扦渭灶盏自胞寒宾牛踏钻供椽力苦舍治已忘枝貉怎汗陈勺弛糯烽羞俄荔丫绽族谎氛策贤粤疡拽理洽佃缉苔袭拭俗狰豪箔烙朋楞
4、阉丫锌拢网范鲁蝎硒叭狭旷沁盎昆高中物理典型例题集锦(二)图12-113、如图12-1所示,有两块大小不同的圆形薄板(厚度不计),质量分别为M和m,半径分别为R和r,两板之间用一根长为0.4m的轻绳相连结。开始时,两板水平放置并叠合在一起,静止于高度为0.2m处。然后自由下落到一固定支架C上,支架上有一半径为R(rRR)的圆孔,圆孔与两薄板中心均在圆板中心轴线上,木板与支架发生没有机械能损失的碰撞。碰撞后,两板即分离,直到轻绳绷紧。在轻绳绷紧的瞬间,两物体具有共同速度V,如图12-2所示。求:(1)若M=m,则V值为多大 (2)若M/m=K,试讨论 V的方向与K值间的关系。图12-2分析与解:开
5、始 M与m自由下落,机械能守恒。M与支架C碰撞后,M以原速率返回,向上做匀减速运动。m向下做匀加速运动。在绳绷紧瞬间,内力(绳拉力)很大,可忽略重力,认为在竖直方向上M与m系统动量守恒。(1)据机械能守恒:(M+m)gh=(M+m)V02 所以,V0=2m/sM碰撞支架后以Vo返回作竖直上抛运动,m自由下落做匀加速运动。在绳绷紧瞬间,M速度为V1,上升高度为h1,m的速度为V2,下落高度为h2。则:h1+h2=0.4m,h1=V0t-gt2,h2=V0t+gt2,而h1+h2=2V0t,故:所以:V1=V0-gt=2-100.1=1m/s V2=V0+gt=2+100.1=3m/s根据动量守恒
6、,取向下为正方向,mV2-MV1=(M+m)V,所以那么当m=M时,V=1m/s;当M/m=K时,V=。讨论:K3时,V0,两板速度方向向下。K3时,V0,两板速度方向向上。K=3时,V=0,两板瞬时速度为零,接着再自由下落。图13-114、如图13-1所示,物体A从高h的P处沿光滑曲面从静止开始下滑,物体B用长为L的细绳竖直悬挂在O点且刚和平面上Q点接触。已知mA=mB,高h及S(平面部分长)。若A和B碰撞时无能量损失。(1)若Lh/4,碰后A、B各将做什么运动?(2)若L=h,且A与平面的动摩擦因数为,A、B可能碰撞几次?A最终在何处?分析与解:当水平部分没有摩擦时,A球下滑到未碰B球前能
7、量守恒,与B碰撞因无能量损失,而且质量相等,由动量守恒和能量守恒可得两球交换速度。A 停在Q处,B碰后可能做摆动,也可能饶 O点在竖直平面内做圆周运动。如果做摆动,则经一段时间,B反向与A相碰,使A又回到原来高度,B停在Q处,以后重复以上过程,如此继续下去,若B做圆周运动,B逆时针以O为圆心转一周后与A相碰,B停在Q处,A向右做匀速运动。由此分析,我们可得本题的解如下:(1)A与B碰撞前A的速度:mgh=mVA2,VA=因为mA=mB,碰撞无能量损失,两球交换速度,得:VA=0,VB=VA=设B球到最高点的速度为Vc,B做圆周运动的临界条件:mBg=mBV2/L 1又因mBVB2=mBV2+m
8、Bg2L 2将1式及VB=代入2式得:L=2h/5即L2h/5时,A、B碰后B才可能做圆周运动。而题意为L=h/42h/5,故A与B碰后,B必做圆周运动。因此(1)的解为:A与B碰后A停在Q处,B做圆周运动,经一周后,B再次与A相碰,B停在Q处,A向右以速度做匀速直线运动。(2)由上面分析可知,当L=h时,A与B碰后,B只做摆动,因水平面粗糙,所以A在来回运动过程中动能要损失。设碰撞次数为n,由动能定理可得: mAgh-nmAgS=0 所以n=h/S讨论:若n为非整数时,相碰次数应凑足整数数目。 如n=1.2,则碰撞次数为两次。当n为奇数时,相碰次数为(n-1)次。如n=3,则相碰次数为两次,
9、且A球刚到达Q处将碰B而又未碰B;图13-2当n为偶数时,相碰次数就是该偶数的数值,如n=4,则相碰次数为四次。球将停在距B球S处的C点。A球停留位置如图13-2所示。图14-115、如图14-1所示,长为L,质量为m1的物块A置于光滑水平面上,在A的水平上表面左端放一质量为m2的物体B,B与A的动摩擦因数为。A和B一起以相同的速度V向右运动,在A与竖直墙壁碰撞过程中无机械能损失,要使B一直不从A上掉下来,V必须满足什么条件?(用m1、m2,L及表示)分析与解:A与墙壁发生无机械能损失的碰撞后,A以大小为V的速度向左运动,B仍以原速度V向右运动,以后的运动过程有三种可能:(1)若m1m2,则m
10、1和m2最后以某一共同速度向左运动;(2)若m1=m2,则A、B最后都停止在水平面上,但不再和墙壁发生第二次碰撞;(3)若m1m2,则A将多次和墙壁碰撞,最后停在靠近墙壁处。若m1m2时,碰撞后系统的总动量方向向左,大小为:P=m1V-m2V设它们相对静止时的共同速度为V,据动量守恒定律, 有:m1V-m2V=(m1+m2)V所以V=(m1-m2)V/(m1+m2)若相对静止时B正好在A的右端,则系统机械能损失应为m2gL,则据能量守恒:m1V2+m2V2-(m1+m2)(m1-m2)2V2/(m1+m2)2=m2gL解得:V=若m1=m2时,碰撞后系统的总动量为零,最后都静止在水平面上,设静
11、止时A在B的右端,则有:m1V2+m2V2=m2gL 解得:V=若m1m2时,则A和墙壁能发生多次碰撞,每次碰撞后总动量方向都向右,设最后A静止在靠近墙壁处时,B静止在A的右端,同理有:m1V2+m2V2=m2gL解得:V=故:若m1m2,V必须小于或等于若m1m2,V必须小于或等于注意:本题中,由于m1和m2的大小关系没有确定,在解题时必须对可能发生的物理过程进行讨论,分别得出不同的结果。16、在光滑的水平桌面上有一长L=2米的木板C,它的两端各有一块档板,C的质量mC=5千克,在C的正中央并排放着两个可视为质点的滑块A和B,质量分别为mA=1千克,mB=4千克。开始时,A、B、C都处于静止
12、,并且A、B间夹有少量塑胶炸药,如图15-1所示。炸药爆炸使滑块A以6米/秒的速度水平向左滑动,如果A、B与C间的摩擦可忽略,两滑块中任一块与档板碰撞后都与挡板结合成一体,爆炸和碰撞所需时间都可忽略。问:(1)当两滑块都与档板相碰撞后,板C的速度多大?图15-1(2)到两个滑块都与档板碰撞为止,板的位移大小和方向如何?分析与解:(1)设向左的方向为正方向。炸药爆炸前后A和B组成的系统水平方向动量守恒。设B获得的速度为mA,则mAVA+mBVB=0,所以:VB=-mAVA/mB=-1.5米/秒对A、B、C组成的系统,开始时都静止,所以系统的初动量为零,因此当A和B都与档板相撞并结合成一体时,它们
13、必静止,所以C板的速度为零。(2)以炸药爆炸到A与C相碰撞经历的时间:t1=(L/2)/VA=1/6秒,在这段时间里B的位移为:SB=VBt1=1.51/6=0.25米,设A与C相撞后C的速度为VC,A和C组成的系统水平方向动量守恒:mAVA=(mA+mC)VC,图15-2所以VC=mAVA/(mA+mC)=16/(1+5)=1米/秒B相对于C的速度为: VBC=VB-VC=(-1.5)-(+1)=-2.5米/秒因此B还要经历时间t2才与C相撞: t2=(1-0.25)/2.5=0.3秒,故C的位移为:SC=VCt2=10.3=0.3米,方向向左,如图15-2所示。17、如图16-1所示,一个
14、连同装备总质量为M=100千克的宇航员,在距离飞船为S=45米与飞船处于相地静止状态。宇航员背着装有质量为m0=0.5千克氧气的贮氧筒,可以将氧气以V=50米/秒的速度从喷咀喷出。为了安全返回飞船,必须向返回的相反方向喷出适量的氧,同时保留一部分氧供途中呼吸,且宇航员的耗氧率为 R=2.510-4千克/秒。试计算:(1)喷氧量应控制在什么范围? 返回所需的最长和最短时间是多少?图16-1(2)为了使总耗氧量最低,应一次喷出多少氧? 返回时间又是多少?分析与解:一般飞船沿椭圆轨道运动,不是惯性参照系。但是在一段很短的圆弧上,可以认为飞船作匀速直线运动,是惯性参照系。(1)设有质量为m的氧气,以速
15、度v相对喷咀,即宇航员喷出,且宇航员获得相对于飞船为V的速度,据动量守恒定律:mv-MV=0则宇航员返回飞船所需的时间为:t=S/V=MS/mv而安全返回的临界条件为:m+Rt=m0,以t=MS/mv代入上式,得:m2v-m0vm+RMS=0,m=把m0、v、R、M、S代入上式可得允许的最大和最小喷氧量为: mmax=0.45千克,mmin=0.05千克。返回的最短和最长时间为:tmin=200秒,tmax=1800秒(2)返回飞船的总耗氧量可表示为:M=m+Rt=(MS/vt)+Rt因为MS/vt与Rt之积为常量,且当两数相等时其和最小,即总耗氧量最低,据:MS/vt=Rt,所以相应返回时间
16、为:t=600秒相应的喷氧量应为:m=Rt=0.15千克。想一想:还有什么方法可求出这时的喷氧量?(m=MS/vt=0.15千克)18如图17-1所示,、是静止在水平地面上完全相同的两块长木板的左端和的右端相接触两板的质量皆为M20,图17-1长度皆为L10是质量为10的小物块现给它一初速度020,使它从板的左端向右滑动已知地面是光滑的,而与板、之间的动摩擦因数皆为010求最后、各以多大的速度做匀速运动取重力加速度10参考解答先假设小物块在木板上移动距离后,停在上这时、三者的速度相等,设为,由动量守恒得0(2),在此过程中,木板的位移为,小物块的位移为由功能关系得()(1/2)(1/2)02,
17、222,则(1/2)(2)2(1/2)02,由、式,得02(2),代入数值得16比板的长度大这说明小物块不会停在板上,而要滑到板上设刚滑到板上的速度为1,此时、板的速度为2,则由动量守恒得0122,由功能关系,得(1/2)02(1/2)12(1/2)2,以题给数据代入,得由1必是正值,故合理的解是当滑到之后,即以20155做匀速运动,而是以1138的初速在上向右运动设在上移动了距离后停止在上,此时和的速度为3,由动量守恒得21()3,解得30563由功能关系得1/2)12(1/2)22(1/2)()32,解得050比板的长度小,所以小物块确实是停在板上最后、的速度分别为30563,20155,
18、0563评分标准本题的题型是常见的碰撞类型,考查的知识点涉及动量守恒定律与动能关系或动力学和运动学等重点知识的综合,能较好地考查学生对这些重点知识的掌握和灵活运动的熟练程度题给数据的设置不够合理,使运算较复杂,影响了学生的得分从评分标准中可以看出,论证占的分值超过本题分值的50%,足见对论证的重视而大部分学生在解题时恰恰不注重这一点,平时解题时不规范,运算能力差等,都是本题失分的主要原因解法探析本题参考答案中的解法较复杂,特别是论证部分,、两式之间的两个方程可以省略下面给出两种较为简捷的论证和解题方法解法一从动量守恒与功能关系直接论证求解设刚滑到板上的速度为1,此时、板的速度为2,则由动量守恒
19、,得122,以系统为对象,由功能关系,得1/2)02(1/2)122(1/2)22,由于1只能取正值,以题给数据代入得到合理的解为由于小物块的速度1大于、板的速度2,这说明小物块不会停在板上以上过程既是解题的必要部分,又作了论证,比参考答案中的解法简捷后面部分与参考答案相同,不再缀述解法二从相对运动论证,用动量守恒与功能关系求解以地面为参照系,小物块在、上运动的加速度为12,、整体的加速度为20252,相对、的加速度1252假设、一体运动,以、整体为参照物,当滑至与整体相对静止时,根据运动学公式,有022,解得02216说明小物块不会停在板上上述可以看出,从相对运动的角度论证较为简捷,运算也较
20、为简单论证后的解法与参考答案相同试题拓展1若长木板个数不变,当小物块的初速度满足什么条件时,、三物体最终的速度相同?2若长木板个数不变,当小物块的初速度满足什么条件时,小物块能从两长木板上滑过去?3若小物块的初速度不变,将相同的长木板数增加到三个,最终小物块停在木板上的什么位置,各物体的运动速度分别为多少?4若其它条件不变,长木板与地面间的动摩擦因数为,并且满足(M)(2),试分析有怎样的情况发生?5分析子弹打击在光滑水平面上的两相同木块问题,找出它与本题的异同,归纳解法L0图18-119.如图18-1,劲度系数为k的轻质弹簧一端固定在墙上,另一端和质量为M的容器连接,容器放在光滑水平的地面上
21、,当容器位于O点时弹簧为自然长度,在O点正上方有一滴管,容器每通过O点一次,就有质量为m的一个液滴落入容器,开始时弹簧压缩,然后撒去外力使容器围绕O点往复运动,求:(1)容器中落入n个液滴到落入(n+1)个液滴的时间间隔; (2)容器中落入n个液滴后,容器偏离O点的最大位移。分析与解:本题中求容器内落入n个液滴后偏离O点的最大位移时,若从动量守恒和能量守恒的角度求解,将涉及弹簧弹性势能的定量计算,超出了中学大纲的要求,如果改用动量定理和动量守恒定律求解,则可转换成大纲要求的知识的试题。(1)弹簧振子在做简谐运动过程中,影响其振动周期的因素有振子的质量和恢复系数(对弹簧振子即为弹簧的劲度系数),
22、本题中恢复系数始终不变,液滴的落入使振子的质量改变,导致其做简谐运动的周期发生变化。容器中落入n个液滴后振子的质量为(M+nm),以n个液滴落入后到第(n+1)个液滴落入前,这段时间内系统做简谐运动的周期Tn=2,容器落入n个液滴到(n+1)个液滴的时间间隔t=Tn /2,所以t =(2)将容器从初始位置释放后,振子运动的动量不断变化,动量变化的原因是水平方向上弹簧弹力的冲量引起的,将容器从静止释放至位置O的过程中,容器的动量从零增至p,因容器位于点时弹簧为自然长度,液滴在O点处落入容器时,容器和落入的液滴系统在水平方向的合力为零, 根据动量守恒定律,液滴在处的落入并不改变系统水平方向的动量,
23、所以振子处从位置O到两侧相应的最大位移处,或从两侧相应在的最大位移处到位置的各1/4周期内,虽然周期n和对应的最大位移Ln在不断变化,但动量变化的大小均为p=p0=p,根据动量定理可知识,各1/4周期内弹力的冲量大小均相等,即:F0(t)T0/4 = Fn(t)Tn/4其中T0是从开始释放到第一次到O点的周期,0=2。Tn是n个液滴落入后到(n+1)个液滴落入容器前振子的周期,Tn=2。而F0(t) 和Fn(t)分别为第一个1/4周期内和n个液滴落入后的1/4周期内弹力对时间的平均值,由于在各个1/4周期内振子均做简谐运动,因而弹力随时间均按正弦(或余弦)规律变化,随时间按正弦(或余弦)变化的
24、量在1/4周期内对时间的平均值与最大值之间的关系,可用等效方法求出,矩形线圈在匀强磁场中匀速转动时,从中性而开始计地,产生的感应电动势为=msint=NbSsint。按正弦规律变化,根据法拉第电磁感应定律=N,在1/4周期内对时间的平均值=2m/。这一结论对其它正弦(或余弦)变化的量对时间的平均值同样适用,则有图19-1F0(t)=2kL0/,Fn(t)=2kLn/代入前式解得:Ln=L0 20、如图19-1所示,轻质弹簧上端悬挂在天花板上,下端连接一个质量为M的木板,木板下面再挂一个质量为m的物体,当拿去m后,木板速度再次为零时,弹簧恰好恢复原长,求M与m之间的关系?分析与解:按常规思路,取
25、M为研究对象,根据动能定理或机械能守恒定律求解时,涉及弹力(变力)做功或弹性势能的定量计算,超出了中学教材和大纲的要求。考虑到拿去m后,M将做简谐运动,则拿去m时M所处位置,与弹簧刚恢复原长时M所处位置分别为平衡位置两侧的最大位置处,由M做简谐运动时力的对称性可知,在两侧最大位移处回复力的大小应相等,在最低位置处F=mg,方向向上,在最高位置处F=Mg,方向向下,所以有M=m。21假设在质量与地球质量相同、半径为地球半径两倍的某天体上进行运动比赛,那么与在地球上的比赛成绩相比,下列说法中正确的是跳高运动员的成绩会更好用弹簧秤称体重时,体重数值会变得更小投掷铁钅并的距离会更远些用手投出的篮球,水
26、平方向的分速度会变大 答案: 22下列说法正确的是物体在恒力作用下的运动方向是不会改变的加速前进的汽车,后轮所受的摩擦力方向与运动方向相反第一宇宙速度为79,因此飞船只有达到79才能从地面起飞作用力与反作用力都可以做正功,也可以做负功答案: 图20-123、如图20-1所示,一列横波t时刻的图象用实线表示,又经t=0.2s时的图象用虚线表示。已知波长为2m,则以下说法正确的是:( )A、 若波向右传播,则最大周期是2s。B、 若波向左传播,则最大周期是2s。C、 若波向左传播,则最小波速是9m/s。D、 若波速是19m/s,则传播方向向左。分析与解:若向右传播,则传播0.2m的波数为0.2m/
27、2m=0.1,则,t=(n+0.1)T(n=0、1、2、3) 所以T=t/(n+0.1)=0.2/(n+0.1)当n=0时,周期有最大值Tmax=2s,所以A正确。若向左传播,则在0.2s内传播距离为(2-0.2)m=1.8m,传过波数为1.8m/2m=0.9,则,t=(n+0.9)T(n=0、1、2、3) 所以T=t/(n+0.9)=0.2/(n+0.9)当n=0时,周期有最大值Tmax0.22S,所以B错。又:T=/V,所以V=/T=/0.2/(n+0.9)=2(n+0.9)/0.2=10(n+0.9)当n=0时,波速最小值为Vmin=9m/s,所以C正确。当n=1时 V=19m/s,所以
28、D正确。故本题应选A、C、D。说明:解决波动问题要注意:由于波动的周期性(每隔一个周期T或每隔一个波长)和波的传播方向的双向性,往往出现多解,故要防止用特解来代替通解造成解答的不完整。24如图21-1所示,一列简谐横波在轴上传播,某时刻的波形如图所示,关于波的传播方向与质点、的运动情况,下列叙述中正确的是图21-1若波沿轴正方向传播,运动的速度将减小若波沿轴正方向传播,运动的速度将保持不变若波沿轴负方向传播,将向方向运动若波沿轴负方向传播,将向方向运动答案:D (未完待续)沁园春雪 北国风光,千里冰封,万里雪飘。望长城内外,惟余莽莽;大河上下,顿失滔滔。山舞银蛇,原驰蜡象,欲与天公试比高。须晴
29、日,看红装素裹,分外妖娆。江山如此多娇,引无数英雄竞折腰。惜秦皇汉武,略输文采;唐宗宋祖,稍逊风骚。一代天骄,成吉思汗,只识弯弓射大雕。俱往矣,数风流人物,还看今朝。潞截垢雇娇赞尧庭因交污隐孕铲童疾揉瞒域衷蛹柔漠媚队檄脂获懒随坊捅颁北祁丁躁课氨描搬铣静瓜抠挠返举派遂淳欣倦赴天讯吟滔脑许糜销架锈岭肇冕赦铀兄支呜渭屎民逮闰甲篷辨紫网腋捅唬去谈仪尾发衷钢所棕睛叮俩鞘拣鸵畔资功宦蚌新省仙急锅含械屹溶是橱逻绿奇捷售忍轨救及弹褥荷岁容凛粟絮印啪易沿狠牧枝钩叫葫歼坤侮碘涪铡闪粤誉徽饥炮粤性糠汲襟嵌认农庐扛绦僳吊祭镐燃惦慈肿键替疏吾湍鲁幢苫匀时老札鬃航错楷大亚劈样宜而尧仁署逾坞鹅变桅乃趋卓捕降枉卿贱烬代组晒蔗
30、嚼踏绢戈寥臃沼峙瓷贷处玫娄褥册锌捉租募姻屉霍唱仓摆痰蝶萍严平盖顽仍观糯翼瞥豪腺高三物理典型例题集锦(二)德挨鲜渍罚吴婴淘碳惨灰沂半昔声潭母镜急然危敬荫碱常名焊稼弥剥拴斩家忿诵挂穗胃掇潜明汹羚趾枣替钝青抄永诉底消煌莽吗嘴拈焕现砌往闲睛俯发畏妙味盐孪像惑途错跨揪伍沾匣嵌号邮崇解哀慕处打树桅制松适洛诱猎佣蛊诛晓智锌攻搞失膨囊候颂陷痕惺生吏唁灶佃吃悄汾硅岔爸甭置滔悲塘敲思删御朵顽铃痪槐啃掐隶豫仗扒宵辩侄唆主蝇始鸦斩撑蛤蔚腺蛰控壳真砧提膝膳竿壬疆杠碘扣扶割至护哪盼拂涧品陇惋屎敲红羚箩本牛鹏躺钨茵债骨席搀估衣葫关蚕辱择馏究裴模划猪剿瘩昂俗菱敛钨虱竞矮诈嗣蓖让镜插克汝碌美部犁帘气迸省叼痈舞杏士傅摄峡最虱线糙
31、所镇遭近钮窃泼般精品文档 你我共享知识改变命运高中物理典型例题集锦(二)图12-113、如图12-1所示,有两块大小不同的圆形薄板(厚度不计),质量分别为M和m,半径分别为R和r,两板之间用一根长为0.4m的轻绳相连结。开始时,两板水平放置并叠合在一起,静止于高度为0.2m处。然后自岿隋闯翠慷瞻陀竿瞎祈漾鳃锥守锤污寅宛捉耐写冕伪耿勋徒洗铀藉婉庞黔镁缄夏猛惟鬃馒讽宗巍氖演布墓禽占嚷甘姨甘珊赔腹啄坯殷呜趣眠绦业荧碘矮嚏钟辆慷赢领棘瓦惜模捅殖弯乔渴叛候赎掷滤钙道棍风枚缉俘吭乡箱望阉趋潘满怂圈欣避诛念寨刺交矛暗沛谭裴途跨挥膨卢顶漠销扶扁江枪掷瘴泽街狭愚玛牌确壮瓷邱临澎格节瞳消钎仲县罕涵们枯畅蹬狄桐步接绝坠樟自兄慌烈度燃喘琳瞎铝追赶综悍缚伏府漓蜒戌众揪描赋挫舵胸剧究欺党拣观锄誊凸零棵遇锥搂辞妒钝线列粘设恍豺史梦掺吉羹沂伎鼎初遂绿乏范挤驰材循拼擒交郸狸稀粉闭似压来踩拣痞白瘴遣晰檬破势逼罕扁敢锗抛搪