收藏 分销(赏)

泵送高强大体积混凝土施工的温度监测.doc

上传人:zhou****ping 文档编号:33693 上传时间:2020-11-26 格式:DOC 页数:3 大小:35.50KB
下载 相关 举报
泵送高强大体积混凝土施工的温度监测.doc_第1页
第1页 / 共3页
泵送高强大体积混凝土施工的温度监测.doc_第2页
第2页 / 共3页
泵送高强大体积混凝土施工的温度监测.doc_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述

1、泵送高强大体积混凝土施工的温度监测厦门海光大厦高35层,地下室底板混凝土强度等级为C35,抗渗标号S8,一次浇筑量2800m,不预留后浇带。为防止升温、降温过程中可能产生的温度裂缝,进行了温度监测。第1章 温度监测及其结果采用铜康铜热电偶测温法。用UJ33A型低电势直流电位差计并联DM-6017型数显式万用表进行测量。地下室底板长53.55m,宽43.10m,厚1.2m,内筒部分长宽均为16.0m,厚1.8m。结合配筋及上述情况,采用均匀布点的方式共布置25个测位汁79个测点。平面布置示意见图3-8-10测温结果显示混凝土最高温升值不仅与水泥品种和用量有关,并随着混凝土厚度的增加,传热阻力加大

2、,最高.温升值也增高。通过15d的现场监测,取得了大量监测数据。现将不同深度测位的各测温点的温度与龄期的关系,以1号(深1.2m)为代表,如图3-8-2所示。由于温度监测及时,提供了准确的温度数据,使施工现场能根据温度变化采取相应的技术措施,故对控制温升,减少混凝土内外温差,延缓水化热的释放速率,控制降温速度等起了有效的作用,取得了较好的技术和经济效益。第2章 几个问题的探讨第1节 泵送高强大体积混凝土配合比定海光大厦地下室底板混凝土强度高,抗渗标号高,且不允许留后浇带,需一次浇筑完成。采用泵送,坍落度要求为810cm,混凝土缓凝6h左右。在上述限定条件下,经试验先确定使用顺昌水泥厂为水口大坝

3、专门生产的炼石牌普硅525号水泥,其矿物成分见表3-8-1。根据Woods公式可求出该水泥的水化热为407320J/kg,明显低于一般普硅525号水泥的水化热(460240J/kg)。为保证足够的抗渗性,设计要求内掺水泥用量10%的UEA混凝土微膨胀剂。在限制条件下,UEA产生的膨胀能转化为化学预压应力,可补偿混凝土的收缩,防止并减少裂纹,提高抗渗性。但掺入UEA后,混凝土凝结时间略有缩短,坍落度损失也较大,于是有针对性地选用P0ZZ0LITHC6220C混凝土缓凝引气减水剂,掺加量为每千克水泥2.53.0mL,可缓凝6h左右且节约水泥8%10%。掺加的粉煤灰是华能福州电厂的产品,该粉煤灰铝硅

4、玻璃体含量大于70%,有较高的活性,在Ca(0H)2和CaS042H20的激发下,活性充分发挥,可大大提高混凝土的后期强度,增加混凝土的密实度。基于以上所述,使用等量取代法进行混凝土配合比设计计算和试验,最后确定了7组混凝土配合比(表3-8-2)。由表3-8-2可知,水泥最大用量为363kg/m3,故混凝土内最大绝热温升值应为:T max =(WQ)/(C)=(363407320)/(993.72400)=62假设纵向一维散热,散热系数为0.6,则由水化热引起的温升值应为37.2。最后地下室底板实施方案为7号方案,初凝时间为9h25min。浇筑中按规定留取混凝土试样进行强度检测,并按规范要求进

5、行强度检验评定,验评结果显示超标较大,说明还有进一步降低水泥用量的余地。根据试验,粉煤灰掺加量为基准混凝土水泥用量的20%,UEA内掺10%较好。表3-8-3为调整后的配合比。试验结果表明,水泥用量虽明显减少,但混凝土强度仍能保证,最高绝热温升值降低了6左右。木钙减水剂有许多优越性,但在使用中要预先将粉状减水剂溶化,计量和操作都比较麻烦且坍落度损失较大,因此改用POC6220C混凝土缓凝引气减水剂。对于远距离运输的混凝土,留一部分在车到达目的地前或泵送前进行原液后掺,既避免了坍落度损失,又改善了混凝土的和易性,是更为理想的外加剂。海光大厦地下室底板混凝土配合比设计表3-8-2试验结果还表明混凝

6、土的实测表观密度大于按绝对体积法计算所的计算值,分析原因主要是受混凝土组织结构差异的影响、细骨料自身表观密度及空隙路的影响等。因此,施工时还需根据混凝土的实测表观密度对上述配合比进行调整。第2节 温度监测点布点方案的优化设计施工实践证明,应根据基础平面特征和规范要求,尽可能减少监测位,而沿厚度纵应增加测点数,同时根据钢筋布筋密度适当调整测位位置,见图3-8-3。优化后的布点方案保证了内筒和电梯井的监测,且有相对的半轴对称性,同时又充分考虑了海光大厦基础不对称的平面特点。对1.2m厚的底板部分及沿侧模板部分别适当减少监测点,将钢筋密度高的各轴线交汇处的测点略作位置调整,强化了其规律性、代表性和整

7、体性。沿厚度方向,每一测位的上测点(混凝土浇筑块体的外表温度)和下测点(混凝土浇筑块体底面的温度)位置应严格遵守YBJ22491规程的规定,其他测点则根据混凝土厚度灵活对称划分。第3节 最高温升与降温梯度根据实测,每一测点的最高温升约出现在混凝土浇筑到该点后的第3天。每测点最高温升实测值远高于计算值(参照经验数据计算)。事实上,对1个测位而言,因为混凝土明过程的时间差,1个测位的3个测点或5个测点在某一时间时各自分别处于升温或降温阶段,则1个测位或1个局部区域反映出的温升变化实际是多测点的综合叠加效果。如按3测点或5测点在最高温升实测值时的各点温升平均值比较,则比较接近计算值。降温梯度的控制按

8、YBJ2249l规程规定,混凝土浇筑块体的降温速度宜不大于1.5/d。从实际上对1个测点,甚至1个测位,1个局部范围或局部时间内,混凝土的降温速度常会超出l.5/d的规定,但就整个浇筑块体的降温速度而言,务必控制在1.5/d的平均值内,才能确保混凝土的质量。因为混凝土总体降温缓慢,可充分发挥混凝土徐变特性,减低温度应力。实际上,施工中采用往复推移式连续浇筑,这样,测点间、测位间均存在有时间差、温度差,也只能用整个浇筑块体的降温速度来衡量。降温梯度受许多因素(例如外界气温、养护温度、测点位置等)的影响,但最重要的是受养护温度的制约。实际降温速度远低于升温速度。由图3-8-2实测温度-龄期图可以看出,降温温差与升串串差并不对称于x轴的抛物线。若按降温温差等于升温温差的理论,从第3d最高温升值回落算起,所得混凝土收缩应力值的计算值大于实际应力。因此如果计算值可满足maxR1,则大体积基础底板只要注意控制养护温度就不会出现收缩裂缝。

展开阅读全文
相似文档
猜你喜欢
搜索标签

当前位置:首页 > 环境建筑 > 基础工程/设备基础

移动网页_全站_页脚广告1

关于我们     诚招英才     服务填表     联系我们

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号  |  icp.png浙ICP备2021020529号-1 浙B2-2024(办理中)  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服